反常积分总结

前言

总结反常积分的定义、判别法与简单计算。

反常积分

通过变限积分的极限来定义反常积分,包括无穷积分瑕积分

无穷积分

定义

设函数 f f f定义在无穷区间 [ a ,   + ∞ ) [a,\,+\infty) [a,+)上,且在任何有限区间 [ a ,   u ] [a,\,u] [a,u]上可积。如果存在极限
lim ⁡ u → + ∞ ∫ a u f ( x ) d x = J , \lim_{u\to+\infty}\int_a^uf(x)\mathrm{d}x=J, u+limauf(x)dx=J,
则称此极限 J J J为函数 f f f [ a ,   + ∞ ) [a,\,+\infty) [a,+)上的无穷限反常积分(简称无穷积分),记作
J = ∫ a + ∞ f ( x ) d x , J=\int_a^{+\infty}f(x)\mathrm{d}x, J=a+f(x)dx,
并称 ∫ a u f ( x ) d x \int_a^uf(x)\mathrm{d}x auf(x)dx收敛。若极限不存在,亦称发散。

对于 f f f ( − ∞ ,   + ∞ ) (-\infty,\,+\infty) (,+)上的无穷积分,可以作如下定义
∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ a f ( x ) d x + ∫ a + ∞ f ( x ) d x , (1) \int_{-\infty}^{+\infty}f(x)\mathrm{d}x=\int_{-\infty}^af(x)\mathrm{d}x+\int_a^{+\infty}f(x)\mathrm{d}x,\tag{1} +f(x)dx=af(x)dx+a+f(x)dx,(1)
其中 a a a为任一实数,当且仅当右边两个无穷积分都收敛,它才收敛。

几点注意

  • 无穷积分 ( 1 ) (1) (1)的收敛性与收敛时候的值,都和实数 a a a的选取无关;
  • f f f在任何有限区间 [ v ,   u ] ⊂ ( − ∞ ,   + ∞ ) [v,\,u]\subset(-\infty,\,+\infty) [v,u](,+)上,首先必须是可积的。

性质&判别法

  • 无穷积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛     ⟺     ∀   ε > 0 ,   ∃   G ⩾ a \,\iff\,\forall\,\varepsilon>0,\,\exists\,G\geqslant a ε>0,Ga, 只要 u 1 ,   u 2 > G u_1,\,u_2>G u1,u2>G, 便有

    ∣ ∫ a u 2 f ( x ) d x − ∫ a u 1 f ( x ) d x ∣ = ∣ ∫ u 1 u 2 f ( x ) d x ∣ < ε . \left|\int_a^{u_2}f(x)\mathrm{d}x-\int_a^{u_1}f(x)\mathrm{d}x\right|=\left|\int_{u_1}^{u_2}f(x)\mathrm{d}x\right|<\varepsilon. au2f(x)dxau1f(x)dx = u1u2f(x)dx <ε.

  • f f f在任何有限区间 [ a ,   u ] [a,\,u] [a,u]上可积, a < b a<b a<b,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx ∫ b + ∞ f ( x ) d x \int_b^{+\infty}f(x)\mathrm{d}x b+f(x)dx同敛态,且有
    ∫ a + ∞ f ( x ) d x = ∫ a b f ( x ) d x + ∫ b + ∞ f ( x ) d x , \int_a^{+\infty}f(x)\mathrm{d}x=\int_a^{b}f(x)\mathrm{d}x+\int_b^{+\infty}f(x)\mathrm{d}x, a+f(x)dx=abf(x)dx+b+f(x)dx,
    其中等号右边第一项为定积分(正常积分)。

  • 无穷积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛     ⟺     ∀   ε > 0 ,   ∃   G ⩾ a \,\iff\,\forall\,\varepsilon>0,\,\exists\,G\geqslant a ε>0,Ga, 当 u > G u>G u>G时, 有

    ∣ ∫ u + ∞ f ( x ) d x ∣ < ε . \left|\int_u^{+\infty}f(x)\mathrm{d}x\right|<\varepsilon. u+f(x)dx <ε.

  • f f f在任何有限区间 [ a ,   u ] [a,\,u] [a,u]上可积,且有 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|\mathrm{d}x a+f(x)dx收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx亦收敛,并有
    ∣ ∫ a + ∞ f ( x ) d x ∣ ⩽ ∫ a + ∞ ∣ f ( x ) ∣ d x . \left|\int_a^{+\infty}f(x)\mathrm{d}x\right|\leqslant \int_a^{+\infty}|f(x)|\mathrm{d}x. a+f(x)dx a+f(x)dx.
    ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|\mathrm{d}x a+f(x)dx收敛,称 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx为绝对收敛。

    此性质表明绝对收敛的无穷积分自身也一定收敛。

    收敛而不绝对收敛:条件收敛。

  • 比较原则:大函数的无穷积分收敛则小函数的无穷积分收敛(小发散则大发散)。

  • 柯西判别法:设函数 f f f定义于 [ a ,   + ∞ ) [a,\,+\infty) [a,+)且在任何有限区间 [ a ,   u ] [a,\,u] [a,u]上可积,则有

    则有

    • 0 ⩽ f ( x ) ⩽ 1 x p ,   x ∈ [ a ,   + ∞ ) 0\leqslant f(x)\leqslant\frac1{x^p},\,x\in[a,\,+\infty) 0f(x)xp1,x[a,+),且 p > 1 p>1 p>1时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛;
    • f ( x ) ⩾ 1 x p ,   x ∈ [ a ,   + ∞ ) f(x)\geqslant\frac1{x^p},\,x\in[a,\,+\infty) f(x)xp1,x[a,+),且 p ⩽ 1 p\leqslant1 p1时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx发散;
  • 狄利克雷判别法

    F ( u ) = ∫ a u f ( x ) d x F(u)=\int_a^{u}f(x)\mathrm{d}x F(u)=auf(x)dx [ a ,   + ∞ ) [a,\,+\infty) [a,+)有界 g ( x ) g(x) g(x) [ a ,   + ∞ ) [a,\,+\infty) [a,+)上当 x → + ∞ x\to+\infty x+单调趋于 0 0 0,则 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)\mathrm{d}x a+f(x)g(x)dx收敛。(有界+单调趋于0=>收敛)

  • 阿贝尔判别法

    ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛, g ( x ) g(x) g(x) [ a ,   + ∞ ) [a,\,+\infty) [a,+)上单调有界,则 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)\mathrm{d}x a+f(x)g(x)dx收敛。(收敛+单调有界=>收敛)

瑕积分

定义

设函数 f f f定义在 ( a ,   b ] (a,\,b] (a,b]上,在点 a a a的任一右邻域上无界,但在任何内闭区间 [ u ,   b ] ⊂ ( a ,   b ] [u,\,b]\subset(a,\,b] [u,b](a,b]上有界且可积。如果存在极限
lim ⁡ u → a + ∫ u b f ( x ) d x = J , \lim_{u\to a^+}\int_u^bf(x)\mathrm{d}x=J, ua+limubf(x)dx=J,
则称此极限为无界函数 f f f ( a ,   b ] (a,\,b] (a,b]上的反常积分,并记为
J = ∫ a b f ( x ) d x , J=\int_a^bf(x)\mathrm{d}x, J=abf(x)dx,
并称反常积分 ∫ a b f ( x ) d x \int_a^bf(x)\mathrm{d}x abf(x)dx收敛,如果极限不存在,发散。

  • 被积函数 f f f在点 a a a近旁是无界的,点 a a a称为 f f f的瑕点。

性质&判别法

  • 瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\mathrm{d}x abf(x)dx(瑕点为 a a a)收敛     ⟺     ∀   ε > 0 ,   ∃   δ > 0 \,\iff\,\forall\,\varepsilon>0,\,\exists\,\delta>0 ε>0,δ>0, 只要 u 1 ,   u 2 ∈ ( a ,   a + δ ) u_1,\,u_2\in(a,\,a+\delta) u1,u2(a,a+δ), 总有
    ∣ ∫ u 1 b f ( x ) d x − ∫ u 2 b f ( x ) d x ∣ = ∣ ∫ u 1 u 2 f ( x ) d x ∣ < ε . \left|\int_{u_1}^{b}f(x)\mathrm{d}x-\int_{u_2}^{b}f(x)\mathrm{d}x\right|=\left|\int_{u_1}^{u_2}f(x)\mathrm{d}x\right|<\varepsilon. u1bf(x)dxu2bf(x)dx = u1u2f(x)dx <ε.

  • 柯西判别法:设 f f f定义于 ( a ,   b ] (a,\,b] (a,b], a a a为其瑕点,且在任何 [ u ,   b ] ⊂ ( a ,   b ] [u,\,b]\subset(a,\,b] [u,b](a,b]上可积,则有:

    • 0 ⩽ f ( x ) ⩽ 1 ( x − a ) p ,   x ∈ [ a ,   + ∞ ) 0\leqslant f(x)\leqslant\frac1{(x-a)^p},\,x\in[a,\,+\infty) 0f(x)(xa)p1,x[a,+),且 0 < p < 1 0<p<1 0<p<1时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx收敛;
    • f ( x ) ⩾ 1 ( x − a ) p ,   x ∈ [ a ,   + ∞ ) f(x)\geqslant\frac1{(x-a)^p},\,x\in[a,\,+\infty) f(x)(xa)p1,x[a,+),且 p ⩾ 1 p\geqslant1 p1时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm{d}x a+f(x)dx发散;

其余性质与无穷积分类似,只需将上限替换为 b b b

  • 7
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值