Byzantine-Robust Aggregation in Federated Learning Empowered Industrial IoT
联邦学习授权工业物联网中的拜占庭鲁棒聚合
Abstract
本文提出:自加权几何中值 (AutoGM)聚合规则,为了得到AutoGM 的取值,设计了一种基于交替优化策略的算法。提出了两种鲁棒FL解AutoGM_FL和AutoGM_PFL。AutoGM_FL使用标准FL范式学习共享全局模型,而AutoGM_PFL学习每个设备的个性化模型。1.INTRODUCTION
GM作为梯度下降发的聚合规则时表现出收敛性,最近也被应用于鲁棒FL解中的聚合参数。
需要增强GM的鲁棒性,缓解模型中毒和数据中毒。Contributions
- 提出自加权几何中值 AutoGM,针对给定参数向量集的灵活鲁棒聚合规则。
自动排除极端异常值,根据用户指定的偏度阈值重新加权其余点来实现鲁棒性。
设计了一种基于交替优化策略的自动GM位置计算算法。 - 将AutoGM 和 FL-IIoT 系统的标准 FL和PFL范式 结合,提出 AutoGM_FL 和 AutoGM_PFL
- 30%节点的模型中毒攻击和50%节点数据中毒攻击,也能保持高性能。
2.RELATED WORK
A. Federated Learning on Industrial IoT
Taheri提出基于 FL 的联邦-工业物联网(FL-IIoT)。参与者通过生成对抗网络(GAN)和联合GAN两种动态中毒攻击触发数据。
B. Robust Federated Learning
鲁棒聚合:几何中值、Krum、trimmed mean修剪平均、median中值
现有研究:
鲁棒局和规则可以防御参数列表中高达 50% 的异常值。
2017,Chen提出基于GM分布式梯度聚合,在 i.i.d 设置下有鲁棒性和收敛性。
最近,Pillutla等将GM作为FL的鲁棒聚合,分析所得FL算法对 i.i.d 最小二乘目标的收敛性。
本文提出的AutoGM可以根据所需的偏斜度进行调整。
3.FEDERATED LEARNING FOR IIOT SYSTEMS
A. System Model
IIoT Device:
每个设备拥有一个私有数据集和一个共享的全局模型的副本。
每一轮更新中选择一部分设备进行模型更新,被选中的设备连接中央服务器获取最新的全局模型,使用自己的私有数据集用 随机梯度下降(SGD) 的几个步骤更新模型,通过无线网将新的参数上传中央服务器。
B. Threat Models
无目标投毒攻击:
攻击者的目标是操纵训练好的全局模型,使其对系统不可用,即对测试数据无区别地造成高错误率。
本文实验假设:
- 每个对手控制一个非合谋和损坏设备
- 恶意设备不超过一半
- 不考虑通信噪声和故障
4.AUTO-WEIGHTED GEOMETRIC MEDIAN
AutoGM 根据输入的 欧氏距离 重新加权来实现鲁棒性。
A. GM and AutoGM
本文提出的 AutoGM 由 GM 推广而来。
GM定义:
向量集合 S = { z k } k ∈ [ K ] S=\lbrace z_k \rbrace _{k\in[K]} S={
zk}k∈[K]
点 z ^ \hat{z} z^ 使集合中所有点的欧氏距离之和最小。
GM对异常值有抵抗力,即使破坏一般的输入也是稳定的。
稳定性有限,常数因子仍会收到异常值数量的影响,即边界随着异常值大小的增加而增加。
在GM的基础上,提出更灵活的鲁棒聚合规则AutoGM:
AutoGM定义:
向量集合 S = { z k } k ∈ [ K ] S=\lbrace z_k \rbrace _{k\in[K]} S={
zk}k∈[K]
z ^ ∗ = A u t o G M ( S ) \widehat{z}^*=AutoGM(S) z
∗=AutoGM(S)
与 S S S 的权重向量 α \alpha α 一起
λ \lambda λ 是用户指定的超参数,控制 α \alpha