下载huggingface-transformers模型

为何不调用from_pretrained方法直接下载模型?而且只要联网就可用。但是

  • 如果网络很不好,模型下载时间会很久,一个小模型下载几个小时也很常见
  • 如果换了训练服务器,又要重新下载。
  • 而且容易报错

如何调用huagging face 里的模型,例如vit

本地可以在Models - Hugging Face找到你需要的模型下载在本地进行调用。例子如下

from transformers import ViTImageProcessor, ViTModel
from PIL import Image
import requests

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
# 此处可以是模型名字也可以选择本地路径,本地不容易报错
image_model = 'google/vit-base-patch16-224-in21k'
# image_model = ./models/vit-base-patch16-224-in21k'

processor = ViTImageProcessor.from_pretrained(image_model)
model = ViTModel.from_pretrained(image_model)
inputs = processor(images=image, return_tensors="pt")

outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state

下载操作:

1打开模型页面,输入你要的模型。

点开要选择的页面选择中间选项:

下载你需要的,LFS选一个,若是pytorch就选 pytorch_model.bin,若是tensorflow就选tf_model.h5。

参考:

google/vit-base-patch16-224-in21k · Hugging Face

如何优雅的从Hugging Face下载repo中的部分目录下的文件_Therock_of_lty的博客-CSDN博客

### 如何下载 `vit-base-patch16-224` 模型 要获取并下载 `vit-base-patch16-224` 模型,可以按照以下方式操作: #### 使用 GitCode 下载模型 可以通过提供的项目地址访问该模型的存储库。具体命令如下所示: ```bash git clone https://gitcode.com/mirrors/google/vit-base-patch16-224 cd vit-base-patch16-224 ``` 上述命令会克隆整个仓库到本地环境,其中包含了预训练权重和其他必要的配置文件[^1]。 #### 如果需要单独下载预训练权重 通常情况下,预训练权重会被打包成 `.ckpt` 或 `.pt` 文件形式提供。如果仅需下载这些权重文件,则可以在项目的 Releases 页面查找对应的链接。如果没有明确的 Release 链接,也可以尝试从官方文档或其他可信资源中找到具体的权重 URL 并手动下载。 例如,在某些框架下(如 PyTorch Lightning),可以直接加载远程托管的权重而无需额外下载步骤。以下是基于 Hugging Face Transformers 库的一个简单示例代码片段用于加载此模型: ```python from transformers import ViTModel, ViTConfig config = ViTConfig(patch_size=16) model = ViTModel.from_pretrained("google/vit-base-patch16-224", config=config) print(model) ``` 这段代码展示了如何利用 Hugging Face 提供的功能快速初始化并加载已有的 `vit-base-patch16-224` 权重。 需要注意的是,在实际运行过程中可能会碰到一些常见的错误情况,比如安装依赖失败等问题。对于这类问题可参照相关资料中的解决方案进行排查处理[^3]。 另外值得注意的一点是虽然这里讨论的重点在于 Vit 基础版本 (Patch Size 16),但也有其他变种可供选择,像 CLIP-ViT-Base-Patch32 这样的组合模型则进一步扩展了应用场景范围,特别是在多模态任务领域表现优异[^2][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值