从动物爱好者到实验室技术人员,没有人喜欢让动物进行科学试验。
相反,这样做是为了帮助确保药物和其他物质最终对人类使用是安全的。
长期以来,研究人员一直在寻找非动物替代品。人工智能(AI)系统正在加速这项工作。
人工智能在这一领域的一个应用很简单,但据说证明是有效的——用它来搜索所有现有和可用的全球动物试验结果,以防止需要进行不必要的新试验。
美国非营利组织负责任医学医师委员会(Physicians Committee of Responsible Medicine)的高级研究分析师Joseph Manuppello说,这很有用,因为科学家很难筛选几十年的数据,找到并分析他们到底在寻找什么。
他说:“我对ChatGPT等人工智能模型的应用感到非常兴奋,这些模型可以提取和综合所有可用数据,并从中获得最大收益。”
托马斯·哈通是美国约翰·霍普金斯大学的毒理学教授,也是动物试验替代中心的主任。他说:“人工智能在从科学论文中提取信息方面与人类一样好,甚至更好。”
谈到目前的动物实验,哈通教授表示,检查新化学物质的需要是主要原因之一。每年有超过1000种这样的新化合物进入市场,有很多需要测试。
哈通教授表示,经过训练的人工智能系统正开始能够确定一种新化学物质的毒性。
“只要我们按下一个按钮,就能得到一个初步评估,这给了我们一些‘这里有问题’的信号,这将非常有帮助。”
哈通教授补充称,虽然软件系统长期以来一直用于毒理学研究,但人工智能在能力和准确性方面都实现了“巨大飞跃”。
他说:“这突然创造了以前没有的机会。”他补充说,人工智能现在参与了毒性测试的每个阶段。首先,人工智能甚至被用于制造新药。
当然,人工智能系统在确定化学品安全方面并不完美。其中一个问题是数据偏差现象。
其中一个例子是,如果一个人工智能系统及其算法主要使用来自一个种族的健康数据进行训练。
风险在于,它的计算或结论可能并不完全适用于来自其他种族背景的人。
但正如哈通教授指出的那样,在动物身上测试人类药物有时几乎没有用处。
另一方面,一些广泛使用的药物在动物实验中可能会失败,比如止痛药阿司匹林,它对大鼠胚胎有毒。
哈通教授的结论是,在许多情况下,人工智能已经被证明比动物实验更准确。
人工智能使用来自6442只真实老鼠的数据进行训练,这些数据来自1317种治疗方案。
一个名为“虚拟第二物种”的类似国际项目正在创造一只人工智能驱动的虚拟狗,它正在使用历史狗测试结果的数据进行训练。
凯西·维克斯(Cathy Vickers)是英国国家研究动物替代、改良和减少中心的创新负责人,该中心是该计划的一部分。
她解释说,新药目前首先在老鼠和狗身上进行测试,以检查潜在的毒性,然后才可能开始人体试验。
展望未来,人工智能测试面临的主要挑战是获得监管部门的批准。维克斯博士承认,“完全接受这一观点需要时间”。