apollo自动驾驶进阶学习之:如何实现施工路段限速绕行及其参数调试

本文介绍了在Apollo自动驾驶系统中如何实现施工路段的限速绕行策略。通过Scenario和Stage机制,当遇到TRAFFICCONE障碍物时,车辆会触发借道场景,并调整路径规划边界,确保安全行驶。详细阐述了场景进入和边界更新的实现过程,为自动驾驶软件算法研究提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先需要理解Planning模块是基于Scenario、Stage、Task这样的层次来进行的,即:场景->步骤->具体的决策方法。Apollo可以应对自动驾驶所面临的不同道路场景,都是通过Scenario统一注册与管理。Scenario通过一个有限状态机来判断选择当前行车场景,每个Scenario下又有多个Stage,指当前场景下需要执行的粗略步骤。

Planning模块根据routing(导航模块),prediction(感知模块)感知的周围环境信息,以及地图定位导航信息为自动驾驶车辆规划出一条运动轨迹(包含坐标,速度,加速度,jerk加加速度,时间等信息),然后将这些信息传递给控制模块。

要求

车辆能够避让锥桶表示的施工区域,通过施工区域时车速不允许超过30km/h,超过施工区域后恢复限速。
在这里插入图片描述

1、思路之一:

1、在借道策略中实现

1.1 场景进入

这个问题实际上是一道经典的路径规划问题,可以采用图论中的最短路径算法来解决。 首先,我们可以将施工区域看成一个有向图,把施工区域内的道路看成图的边,路口看成图的节点。每条边有一个权重,表示通过这条路需要的时间或者距离,也就是速度的倒数。我们的目标是找到从起点到终点的最短路径,即限速绕行的最优路径。 在这个问题中,由于有限速的限制,我们不能简单地使用Dijkstra或者A*等最短路径算法。相反,我们需要使用一些特定的算法来计算最短路径,这些算法考虑到了限制条件。 一种常见的算法是基于A*算法的改进算法,称为受限A*(Restricted A*,RA*)。这个算法在计算最短路径时,不仅考虑了路径长度,还考虑了路径上的速度和限速条件。基本思路是对每个节点设置一个速度上限,然后计算从起点到每个节点的最短路径。在计算过程中,如果发现当前节点的速度不能满足限速条件,就将该节点从搜索空间中删除。最终,从起点到终点的最短路径就是所有速度上限都满足限制条件的路径中的最短路径。 除了RA*算法,还有其他一些算法,如受限Dijkstra算法、受限Bellman-Ford算法等。这些算法的基本思路都是类似的,都是在计算最短路径时考虑到了限制条件。 总之,这道题目需要用到图论中的最短路径算法来解决。具体的实现方法可以根据实际情况选择不同的算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DsAuto_汽车电子电控

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值