apollo自动驾驶进阶学习之:如何调试TrafficLight红绿灯交通规则参数调整

本文介绍了Apollo自动驾驶系统中Planning模块如何处理交通灯规则,特别是红绿灯停车和行驶的逻辑。文章详细阐述了总体思路、处理流程,并提及了关键参数的调整,帮助读者理解如何调试 TrafficLight 参数以实现更精确的红绿灯交通规则控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结:Planning模块根据routing(导航模块),prediction(感知模块)感知的周围环境信息,以及地图定位导航信息为自动驾驶车辆规划出一条运动轨迹(包含坐标,速度,加速度,jerk加加速度,时间等信息),然后将这些信息传递给控制模块。

1、总体思路及流程图

在这里插入图片描述

对交通灯的处理是红灯停,绿灯行,黄灯也停

首先从map中获取存储所有信号灯的vector,然后对每一个信号灯进行遍历;

1)如果根据车辆当前的位置判断已经驶过红绿灯,则当前遍历的红绿灯则不作任何处理

2)遍历已经驶过的交通灯的ID,如果当前交通灯已经完成,则不做处理;

Apollo中PNC车辆红灯停,绿灯行的基本功能是具有的,因此只需要更改代码中停车在停止线灯2-2.2 米内相关的代码或配置。

2、相关参数

关于本场景相关的配置都在这个部分:


                
### Apollo平台红绿灯识别实现方法 #### 输入处理与预筛选 Apollo平台通过一系列复杂的算法来完成交通信号灯的识别工作。对于输入到系统的信号灯位置、形状以及检测评分,系统会选择最合适的信号灯进行进一步分析[^1]。 #### 基于CNN的目标检测 采用卷积神经网络(CNN),该模型专门训练用于定位并分类图像中的特定对象,在本案例中即为交通信号灯。当在感兴趣的区域内未能找到符合条件的对象时,相应的记录会被打上“未知”的标签,并终止后续流程。 ```python def detect_traffic_light(image, roi_area): """ Detect traffic lights within a specified region of interest. Args: image (numpy.ndarray): Input image data from camera feed. roi_area (tuple): Region Of Interest coordinates. Returns: list: List containing detected traffic light objects with their positions and states or an empty list if none found. """ # Apply CNN model to ROI area for detecting traffic lights detections = cnn_model.predict(image[roi_area]) if not detections: return [] # Mark as unknown when no detection is made filtered_detections = [] for det in detections: score = calculate_confidence_score(det) if score >= threshold: filtered_detections.append({ 'position': get_position_from_detection(det), 'state': determine_state_based_on_color_pattern(det) }) return filtered_detections ``` #### 结合高精地图数据优化性能 为了提高准确性,Apollo还利用了高清地图(HD Map)所提供的先验信息作为辅助手段之一。这有助于缩小搜索范围至更精确的兴趣区(ROI),从而减少误报率并加快响应速度[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DsAuto_汽车电子电控

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值