Jacobian矩阵的几何意义

本文深入探讨了雅克比矩阵在机器人学中的关键作用,特别是在动力学建模和坐标变换过程中。通过解析雅可比矩阵如何连接关节空间与操作空间的速度,揭示了其在机械手末端运动控制中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可算有人能把雅克比讲清楚了

https://blog.csdn.net/qq_22121229/article/details/83822731

雅各比行列式在积分坐标变换中的应用
上一篇 【数学】均匀分布生成其他分布的方法文章中提到了讲直角坐标系中的无法直接计算正态分布的积分,则将其转换到极坐标之中。在转换之后计算积分的时候【这里相当于用概率累计密度CDF用积分求,然后求导即为概率密度函数PDF】需要乘以一个雅各比行列式。另外注意,因为雅各比行列式是行列式所以其对应的矩阵必为一个方阵,且线性无关。 
具体定理:

动力学建模方程为

对其进行微分线性化

写成雅可比矩阵形式

简写为dx=Jdθ, 其中的J称之为机械手的雅可比矩阵,反映了关节微小位移dθ与手部(手爪)微小运动dx之间的关系.

它可看成是从关节空间到操作空间运动速度的传动比,同时也可用来表示两空间之间力的传递关系.

假设关节速度为未端点速度为,对dx=Jdθ两端同除以dt

因此, 机械手的雅可比矩阵定义为它的操作空间速度与关节空间速度的线性变换,v为机械手未端在操作空间的广义速度, 或称操作速度, w为关节速度.

https://blog.csdn.net/haolexiao/article/details/60757589

https://www.cnblogs.com/leexiaoming/p/7224781.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AplusX

踩坑不易,打个赏呗~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值