上来先开了一大堆坑,不知道要填到什么时候,有点自闭,不想学习的时候就写一写吧
这个算是本科微分几何课程的笔记整理,主要涉及中的的曲线和
中的曲面,follow的是Klingenberg的A Course in Differential Geometry.
说到这我想起来,刚开学时向修过的同学要实体书,自己打的是Kallenberg,闹了笑话。原因是记得大二时去某校的暑期学校,概率论讨论班用书是他的Fundations of Mordern Probability, 读的痛不欲生,从此断了学习概率的念想。
这个笔记应该是比较平和的,如果发现了错误,恳请指出。
(Ps. 本篇笔记前半部分到定理1.1是应该知道的预备知识,之后部分只是个练习,与主题内容无关,可以略过。)
预备知识
1.1 欧氏空间和欧氏空间中的等距变换(isometry)
学过泛函都知道几个空间的关系:内积诱导范数,范数诱导距离,距离诱导拓扑
先定义下距离,范数,内积
距离:一个从集合到
的二元函数
,满足
1.正定性:, 等号成立当且仅当
;
2.对称性:;
3.三角不等式:;
这样就在集合上定义了距离,记作,时常略作
,称之为一个距离空间。
范数(线性):一个域(实数域或者复数域)上的线性空间
,给任意点定义到原点的距离
,满足:
1.正定性:,等号成立当且仅当
;
2.齐次性:;
3.三角不等式:.
从而在集合上定义了范数,记作,为一个赋范线性空间,时常略作
.
(思考:为什么要是线性空间,如果是非线性空间会怎样)
内积:在一个域(实数域或者复数域)上的线性空间
中定义的二元函数