微分几何笔记(1) —— 预备知识 & Proof of Mazur-Ulam Theorem

上来先开了一大堆坑,不知道要填到什么时候,有点自闭,不想学习的时候就写一写吧

这个算是本科微分几何课程的笔记整理,主要涉及\mathbb{R}^2中的的曲线和\mathbb{R}^3中的曲面,follow的是Klingenberg的A Course in Differential Geometry.

说到这我想起来,刚开学时向修过的同学要实体书,自己打的是Kallenberg,闹了笑话。原因是记得大二时去某校的暑期学校,概率论讨论班用书是他的Fundations of Mordern Probability, 读的痛不欲生,从此断了学习概率的念想。

这个笔记应该是比较平和的,如果发现了错误,恳请指出。

(Ps. 本篇笔记前半部分到定理1.1是应该知道的预备知识,之后部分只是个练习,与主题内容无关,可以略过。)

 

 预备知识

1.1 欧氏空间\mathbb{R}^n和欧氏空间中的等距变换(isometry)

学过泛函都知道几个空间的关系:内积诱导范数,范数诱导距离,距离诱导拓扑

先定义下距离,范数,内积

距离:一个从集合X\mathbb{R}的二元函数d(x,y),满足

1.正定性:d(x,y)\geq0, 等号成立当且仅当x=y;

2.对称性:d(x,y)=d(y,x);

3.三角不等式:\forall z\in X, d(x,y)\leq d(x,z) + d(z,y);

这样就在集合上定义了距离,记作(X, d)(X,d),时常略作X,称之为一个距离空间。

 

范数(线性):一个域\mathbb{K}(实数域或者复数域)上的线性空间X,给任意点定义到原点的距离\left \| \cdot \right \| :X\rightarrow \mathbb{R},满足:

1.正定性:\left \| x \right \| \geq0,等号成立当且仅当x=0;

2.齐次性:\forall \alpha\in \mathbb{K}, \left \| \alpha x \right \|=|\alpha|\left \| x \right \|;

3.三角不等式:\left \| x+y \right \|\leq\left \| x \right \|+\left \| y \right \|.

从而在集合上定义了范数,记作(X,\left \| \cdot \right \|),为一个赋范线性空间,时常略作X.

(思考:为什么要是线性空间,如果是非线性空间会怎样)

 

内积:在一个域\mathbb{K}(实数域或者复数域)上的线性空间X中定义的二元函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值