1 概念
在计算机视觉领域,跨模态注意(Cross-Modal Attention)是一种技术,用于处理不同模态
(例如图像和文本)之间的关联和对齐。它在多模态任务中起着关键作用,如图像描述生成、视觉
问答和图像文本检索等。
2 过程
跨模态注意的目标是捕捉不同模态之间的语义关联,以便在处理图像和文本之间的联合表示时更好地对齐和融合信息。通常情况下,跨模态注意的过程可以分为以下几个步骤:
-
特征提取: 首先,对于每个模态(例如图像和文本),需要提取出相应的特征表示。对于图像,可以使用卷积神经网络(CNN)提取视觉特征;对于文本,可以使用循环神经网络(RNN)或Transformer等模型提取语义特征。
-
注意力计算: 然后,在考虑两个模态之间的关联时,计算跨模态注意力。这可以通过计算两个模态之间的相似性或相关性来实现。一种常见的方法是使用注意力机制,其中将一个模态的特征作为查询(query),将另一个模态的特征作为键(key