视觉主要用于物体识别和定位
一、视觉里程计(对极几何【2D-2D】、PnP【3D-2D】、ICP【3D-3D】)
1、对极几何:两台摄像机求距离
2、PnP:用来估计相机的位姿
二、光流
描述的是像素随着时间在图像中运动的过程,在SLAM用来跟踪角点的运动
三、立体视觉
用来双目测距,需要双目校正:另一张图上的关键点在同一行号上。
四、直接法
五、深度学习与CV
1、物体识别后防撞涉及到Optical Flow【光流】运动预测算法
2、车辆本身的定位:拓扑,地标算法,基于几何的视觉里程计算法。
六、两个网络:孪生网络、融合网络(3D识别)
1、Siamese network 连体网络【两个卷积神经网络CNN共享权值】,可以获得由不同颜色描绘出的深度信息图片。
2、孪生网络多用于做人脸识别,两个输入判断相似度
七、KITTI数据集讲解—用于感知
1、超声波主要用于倒车
2、毫米波雷达和激光雷达【lidar】主要用于中长距测距和环境感知
3、摄像头主要用于交通信号灯和其他物体的识别
光流与立体视觉:一个基于单个摄像头在连续时刻的图像,另一个是多个摄像头同一时刻的图片。