无人驾驶之计算机视觉

视觉主要用于物体识别和定位

一、视觉里程计(对极几何【2D-2D】、PnP【3D-2D】、ICP【3D-3D】)
1、对极几何:两台摄像机求距离
2、PnP:用来估计相机的位姿

二、光流
描述的是像素随着时间在图像中运动的过程,在SLAM用来跟踪角点的运动
三、立体视觉
用来双目测距,需要双目校正:另一张图上的关键点在同一行号上。
四、直接法
五、深度学习与CV
1、物体识别后防撞涉及到Optical Flow【光流】运动预测算法
2、车辆本身的定位:拓扑,地标算法,基于几何的视觉里程计算法。
六、两个网络:孪生网络、融合网络(3D识别)
1、Siamese network 连体网络【两个卷积神经网络CNN共享权值】,可以获得由不同颜色描绘出的深度信息图片。
2、孪生网络多用于做人脸识别,两个输入判断相似度

七、KITTI数据集讲解—用于感知
1、超声波主要用于倒车
2、毫米波雷达和激光雷达【lidar】主要用于中长距测距和环境感知
3、摄像头主要用于交通信号灯和其他物体的识别

光流与立体视觉:一个基于单个摄像头在连续时刻的图像,另一个是多个摄像头同一时刻的图片。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值