shufflenetv2替换YOLOv8主干

一、shufflenetv2简介
ShuffleNetV2是一种高效的卷积神经网络架构,用于图像分类和目标检测任务。其主要特点是在保持较高准确性的同时,显著减少了模型的计算和参数量。

ShuffleNetV2的核心思想是通过引入轻量级的通道重排(channel shuffle)操作,促使信息在网络中充分混合和传递,从而提高模型的表示能力。通道重排操作将输入特征图按通道数分组,并将这些组进行随机排列,然后再按顺序重新组合,从而打破了通道之间的信息孤岛,增加了特征图之间的交互。

此外,ShuffleNetV2还采用了逐通道的组卷积(depthwise conv)策略,将卷积操作分成多个较小的组,减少了计算成本。

ShuffleNetV2的设计灵感来自于传统的打牌方式中的洗牌操作,通过将特征图的通道进行重排和混合,从而实现了在较小的计算和参数开销下,保持较高的模型性能。这使得ShuffleNetV2成为一种理想的深度学习网络架构,适用于嵌入式设备和计算资源有限的场景。

如下为Channel Shuffle原理:
在这里插入图片描述
网络结构:
在这里插入图片描述
在这里插入图片描述
(a)(b)为ShuffleNet V1原理图,(c)(d)为ShuffleNet V2原理图(d为降采样层)

二、源代码

import torch
import torch.nn as nn


def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    channels_per_group = num_channels // groups
    x = x.view(batchsize, groups, channels_per_group, height, width)
    x = torch.transpose(x, 1, 2).contiguous()
    x = x.view(batchsize, -1, height, width)
    return x


class CBRM(nn.Module):  # Conv BN ReLU Maxpool2d
    def __init__(self, c1, c2):
        super(CBRM, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(c2),
            nn.ReLU(inplace=True),
        )
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)

    def forward(self, x):
        return self.maxpool(self.conv(x))


class Shuffle_Block(nn.Module):
    def __init__(self, ch_in, ch_out, stride):
        super(Shuffle_Block, self).__init__()

        if not (1 <= stride <= 2):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = ch_out // 2
        assert (self.stride != 1) or (ch_in == branch_features << 1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
                self.depthwise_conv(ch_in, ch_in, kernel_size=3, stride=self.stride, padding=1),
                nn.BatchNorm2d(ch_in),

                nn.Conv2d(ch_in, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )

        self.branch2 = nn.Sequential(
            nn.Conv2d(ch_in if (self.stride > 1) else branch_features,
                      branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),

            self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
            nn.BatchNorm2d(branch_features),

            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
    def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

    def forward(self, x):
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out

三、应用YOLOv8
3.1 block.py文件
在ultralytics/nn/modules/block.py中添加第二步的代码,然后在该文件最上方添加如下代码:
在这里插入图片描述
3.2 init.py 文件
在 ultralytics/nn/modules/init.py 文件中的两处位置分别添加如下代码,
在这里插入图片描述
3.3 task.py导入
在 ultralytics/nn/tasks.py 上方导入类名:
在这里插入图片描述
在parse_model类中,添加如下代码:

        elif m in [CBRM, Shuffle_Block]:
            c1, c2 = ch[f], args[0]
            if c2 != nc:
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]

3.4 yolov8-ShuffleNetv2.yaml文件配置

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [ -1, 1, CBRM, [ 32 ] ] # 0-P2/4
  - [ -1, 1, Shuffle_Block, [ 128, 2 ] ]  # 1-P3/8
  - [ -1, 3, Shuffle_Block, [ 128, 1 ] ]  # 2
  - [ -1, 1, Shuffle_Block, [ 256, 2 ] ]  # 3-P4/16
  - [ -1, 7, Shuffle_Block, [ 256, 1 ] ]  # 4
  - [ -1, 1, Shuffle_Block, [ 512, 2 ] ]  # 5-P5/32
  - [ -1, 3, Shuffle_Block, [ 512, 1 ] ]  # 6


# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 3], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 9

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 2], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 12 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 15 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 6], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 18 (P5/32-large)

  - [[12, 15, 18], 1, Detect, [nc]]  # Detect(P3, P4, P5)
### 集成ShuffleNetV2YOLOv5s 在计算机视觉领域,YOLO (You Only Look Once) 是一种流行的实时目标检测框架,而 ShuffleNet V2 则是一种轻量级卷积神经网络架构,旨在提高移动设备上的推理速度。将 ShuffleNet V2 集成到 YOLOv5s 中可以显著减少模型大小并提升运行效率。 以下是关于如何实现这一过程的具体说明: #### 替代主干网络 YOLOv5 的默认主干网络是 CSPDarknet53,在集成过程中可以用 ShuffleNet V2 取代它。ShuffleNet V2 提供了多个版本(如 `shufflenet_v2_x0_5`、`shufflenet_v2_x1_0`),这些版本通过调整通道数来控制模型复杂度和性能平衡[^1]。 #### 修改配置文件 为了完成替换操作,需编辑 YOLOv5 的 YAML 配置文件以适应新的骨干结构。例如,假设我们选用的是 PyTorch 官方预训练权重中的 `shufflenet_v2_x1_0` 版本,则应在 model.yaml 文件里定义如下层结构: ```yaml backbone: # [from, number, module, args] [[-1, 1, models.common.ShuffleNetV2, [1]]] head: ... ``` 这里引入了一个自定义模块路径指向实际实现类的位置。注意这里的参数列表可能依据具体需求有所变化。 #### 自定义模块开发 如果官方库未提供直接支持,还需要创建一个新的 Python 类继承 nn.Module 并重写 forward 方法。下面展示了一种简化版的代码片段用于加载指定类型的 ShuffleNet 模型实例: ```python import torch.nn as nn from torchvision.models import shufflenet_v2_x1_0 class ShuffleNetV2(nn.Module): def __init__(self, pretrained=True): super(ShuffleNetV2, self).__init__() base_model = shufflenet_v2_x1_0(pretrained=pretrained) layers = list(base_model.children())[:-2] # 去掉最后两层全连接层 self.feature_extractor = nn.Sequential(*layers) def forward(self, x): out = self.feature_extractor(x) return out ``` 此脚本截断原始网络至倒数第二个阶段作为特征提取器输出给后续头部组件处理[^2]。 #### 训练与验证流程调整 由于新加入部分可能导致梯度消失等问题,因此建议适当降低初始学习率,并监控损失曲线收敛情况。此外考虑到不同硬件环境下的表现差异,最好也测试一下最终产物的实际 FPS 性能指标[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值