一、shufflenetv2简介
ShuffleNetV2是一种高效的卷积神经网络架构,用于图像分类和目标检测任务。其主要特点是在保持较高准确性的同时,显著减少了模型的计算和参数量。
ShuffleNetV2的核心思想是通过引入轻量级的通道重排(channel shuffle)操作,促使信息在网络中充分混合和传递,从而提高模型的表示能力。通道重排操作将输入特征图按通道数分组,并将这些组进行随机排列,然后再按顺序重新组合,从而打破了通道之间的信息孤岛,增加了特征图之间的交互。
此外,ShuffleNetV2还采用了逐通道的组卷积(depthwise conv)策略,将卷积操作分成多个较小的组,减少了计算成本。
ShuffleNetV2的设计灵感来自于传统的打牌方式中的洗牌操作,通过将特征图的通道进行重排和混合,从而实现了在较小的计算和参数开销下,保持较高的模型性能。这使得ShuffleNetV2成为一种理想的深度学习网络架构,适用于嵌入式设备和计算资源有限的场景。
如下为Channel Shuffle原理:
网络结构: