期刊
IRC 2018 (2018年的国际雷达会议)
题目
Simulating multi-fractal sea clutter and surface based on the random multiplicative model
基于随机乘法模型的多重分形海杂波与海平面模拟
摘要
(1)多重分形海杂波可以用三分区随机乘法模型来模拟(已被证明)
(2)本论文构造了与IPIX雷达海杂波相乘因子相近的多重分形序列和Q阶矩结构配分函数计算了多重分形谱
仿真结果(一)
可以构造出与给定的多重分形谱相似的多重分形序列
(3)然后提出了N2分区随机乘法模型来模拟二维表面,并通过基于配分函数方法的二维多重分形分析计算多重分形谱
仿真结果(二)
基于N2分区的随机乘法过程模型模拟多分形表面是一种很好的方法。
(4)贡献
为海面的表面建模提供了一种新的途径
一.引言
(1)分形信号生成算法通常可以生成单分形或多分形信号
(2)方差调整随机二分法
通过调整输入参数 σ 来生成单分形或多分形序列,并且单分形序列的自相似性和多分形序列的Legendre谱取决于输入参数 σ。这个方法有助于快速生成具有高精度的自相似序列和具有各种局部突发的分形序列,并且便于不同网络流量的仿真 。
(3)模拟真实海杂波序列方法
(4)但是,无论如何对海杂波进行建模,都不可能与真实的海杂波构造相同的时间信号。它只是可以产生与真实海杂波具有相同或相似的多重分形谱的信号。然而,这不能证明两个时间序列是相同的。对于参数设置没有固定规则,我们需要尝试多次以获取相应的参数。
(5) IPIX雷达数据文件的海杂波序列是多重分形的,且N = 3序列的乘因子在(0,1)区间不对称。本文将基于range 8和range 1海杂波数据进行仿真,构建新的相似多重分形谱序列,并利用Q阶矩结构计算多重分形谱,验证其相似性。
根据一维多重分形海杂波构造的具体施工步骤,本文将提出N2分随机乘法模型来构造一个二维表面和二维计算多重分形谱的多重分形分析的基础上,配分函数方法来验证这种方法之间的相似性和随机乘法模型
二.N分随机乘法模型
1.分块随机乘法级联过程的定义
利用N分区随机乘法级联过程合成多重分形海杂波
从均匀分布在0到1之间的度量值1开始,把它分成N个子段,大小相同,同时给他分配N个比例的度量P1到Pn,然后每个子序列进一步划分为N个更小的序列,也同样的重新分配比例到该度量。这个过程重复k次,最终得到尺寸为2k的一维多重分形测度。
其中,最小奇异指数为αmin = logN(1/Pmax),最大奇异指数为αmax = logN(1/Pmin),分别对应多重分形谱的左端点和右端点。多重分形谱宽度为Δα = αmax−αmin = logN(Pmax/Pmin), Pmax/Pmin = NΔα。它能定量地描述信号的波动。Δα越大,信号就越粗糙。
2.BMC集和Cantor集的多重分形谱
BMC集和Cantor集的生成方法是一维N分区随机乘法过程模型的特殊情况。
BMC信号的产生概率(P1/P2, P1 + P2 = 1,0 < P1, P2 < 1)可以分为两类:一类是0 < P1 < 0.5 (P1/P2为0.25/0.75),另一类是0.5 < P1 < 1 (P1/P2为0.75/0.25)。Cantor集的生成概率(P1/P2/P3, P1 + P2 + P3 = 1,0≤P1, P2, P3 < 1)可分为六类。
3.多重分形海杂波的构造步骤
步骤一:提取被测海杂波的乘因子。
步骤二:计算出乘因子的序列
步骤三:对于n分区的随机乘法模型,我们使用非对称瑞利分布的概率密度函数来生成乘法因子。然而,正态分布随机变量的值的范围(−∞,+∞),瑞利分布随机变量的值的范围(0,+∞),和倍增因子的值范围(0,1)。
任何瑞利随机数都可以由两个均值为零的正态随机数求得。每次生成一个随机数时,检查它是否在(0,1)间隔内。如果是,就留着;如果不是,那就放弃吧。重复这些步骤,直到保留点的随机数在每个重复阶段达到所需的数目。
步骤四:构造n分区的随机乘性信号
4.仿真结果
对于不同长度或不同长度的时间序列可能具有相同的多重分形谱,当我们要根据给定的多重分形谱重构一个时间序列时,就会得到一个信号的多样性。特别是当我们使用随机归一化数构造瑞利分布随机数时,对于每一个具有相同生成函数的模拟,生成的乘因子可能不相同。结果表明,该方法可以生成与给定的多重分形谱相似但又不相同的多重分形海杂波数据。
三.二维N2分区乘法级联过程
1.二维N2分块乘法级联过程的定义及多重分形分析
二维N2划分的乘法级联过程从一个正方形开始,我们将它划分为相同大小的N2个子正方形。然后我们将度量P1、P2、P3、…、PN2的N2比例赋给它们。每个子正方形进一步划分为N2个更小的正方形,并以相同的比例重新分配度量。该过程重复k次,最终生成尺寸为2k × 2k的二维多重分形测度。
2.二维N2分块随机乘法级联过程的构造步骤
步骤一:按照N分区的方法生成随机乘法因子。每次生成一个随机数。检查它是否在(0,1)间隔内;如果是,就留着;如果不是,那就放弃吧。重复这些步骤,直到保留点的随机数在每个重复阶段达到所需的数目。在每一阶段,将N2个随机数重塑为N × N矩阵。
步骤二:构造二维曲面。
3.仿真结果
多重分形分析是统计物理的一种方法。多重分形谱是概率统计的结果。虽然两个时间序列的多重分形谱是相同的,但我们不能说这两个时间序列是相同的。由于两个时间序列的振幅和长度可能不相同,多重分形分析的参数设置可能不相同。
根据乘法因子与奇异指数之间的关系分析,可以看出2D-MC的常数乘数间接影响多重分形谱函数的形状。每个阶段的随机乘法因子可能导致不同的质量概率。因此,随机乘因子的分布并不能决定所构建曲面的多重分形谱的形状。然而,这种二维曲面的构造方法是得到具有不同形状多重分形谱的多重分形曲面的一种很好的方法。
四.结论
(1)提出了一种模拟具有多重分形特征的海面的随机乘法模型。它是22分乘模型的一种推广,但它突破了乘因子统计分布对称性的限制,更有利于产生多重分形信号,并期望得到不对称的多重分形谱。
(2)证明了该模型的多重分形特征,并根据随机乘性因子的统计分布生成了具有不同特征的多重分形海面。它为海面的表面模拟提供了一种新的方法。
Tips:
课程需要论文
关注CV方面的同学,在2D方面想出成果可以多看看纹理和分形的Paper。