Background Matting:The World is Your Green Screen
当前的问题及概述:
现有的方法都需要背景和trimap信息进行estimate matte
在本文中,我们需要原图及背景的附加照片,虽然准备阶段复杂,但节省了大量创造trimap的时间以及提升了最终的效果。具体见图1:
模型及loss:
输入为原图I和背景图B’,通过生成的soft segmentation S 和motion prior M对前景F和matte α进行评估。本文提出的Context Switching Block可以组合4个不同的输入cues,通过生成器G的编码器进行特征提取,并使用一个鉴别器D引导训练生成真实的结果。
2.1 CS block(supervised)
其中输入的I,B’,S,M四个cues中,I和B’为原始输入图像,通过腐蚀-膨胀和高斯模糊操作生成人物的粗分割图像S,以及对视频的多帧拼接并进行灰度操作得到motion cues M,输入为X ≡ {I, B’, S,M}。通过生成器G输出的前景图F和alpha matte α,即