2020 CVPR之image matting:Background Matting:The World is Your Green Screen

本文提出了一种新的方法,通过原图、背景图、soft segmentation和motion prior信息估计图像matte,减少了对trimap的需求。采用Context Switching Block结合多个输入线索,使用生成器和鉴别器提升前景提取的准确性和真实性。实验表明,这种方法能生成更高质量的图像,特别是在没有trimap的情况下。
摘要由CSDN通过智能技术生成

Background Matting:The World is Your Green Screen
当前的问题及概述
现有的方法都需要背景和trimap信息进行estimate matte
在本文中,我们需要原图及背景的附加照片,虽然准备阶段复杂,但节省了大量创造trimap的时间以及提升了最终的效果。具体见图1:
在这里插入图片描述
模型及loss
在这里插入图片描述

输入为原图I和背景图B’,通过生成的soft segmentation S 和motion prior M对前景F和matte α进行评估。本文提出的Context Switching Block可以组合4个不同的输入cues,通过生成器G的编码器进行特征提取,并使用一个鉴别器D引导训练生成真实的结果。
2.1 CS block(supervised)
其中输入的I,B’,S,M四个cues中,I和B’为原始输入图像,通过腐蚀-膨胀和高斯模糊操作生成人物的粗分割图像S,以及对视频的多帧拼接并进行灰度操作得到motion cues M,输入为X ≡ {I, B’, S,M}。通过生成器G输出的前景图F和alpha matte α,即

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值