《Background Matting:The World is Your Green Screen》论文笔记

本文详细介绍了Background Matting论文,这是一种新颖的人像抠图方法,利用背景图片和语义分割信息,通过Context Switching模块和GAN优化,实现精准的matting效果。尽管存在需要静态背景和轻微抖动限制,以及针对人像的局限性,但该方法在减少背景像素干扰和提高边缘质量方面取得显著成果。
摘要由CSDN通过智能技术生成

主页:background-matting
参考代码:Background-Matting

1. 概述

导读:这篇文章对于自然场景下人像抠图提出了一种新的matting方法,在该方法中引入一张背景图片作为参考,此后尽量保持背景画面不动(手持设备存在合理的抖动也可以),将语义分割模型的分割结果/前后帧(可选)也引入作为额外的依据信息。为了使这些信息能够发挥最大的作用,文章引入了一个CS(Context Switching block )模块去有效选取有用信息,从而经过解码器之后得到更加准确的matting结果。此外,由于matting的过程中往往会夹杂一些背景的像素信息,文章引入GAN网络去判断融合图像的真假,并使用教师网络(已经训练收敛的网络)去引导学生网络生成matting结果,从而使得matting的融合结果更加自然。

文章的方法是不需要trimap的matting方法,使用CS模块去提取多个输入的有用信息,之后通过解码器得到最后的结果。但是一般情况下matting的结果中或多或少夹带一些背景像素信息,这就造成了边缘不够友好,通过数据增广和CS模块却是可以得到一定程度上的好转,但是还是存在较为明显的问题,对此文章是通过GAN网络/“知识蒸馏”的形式去优化最后的matting融合结果。

文章的方法也是存在下面列出的缺陷的:

  • 1)需要两张图像,一张静态背景和一张包含目标的图像;
  • 2)需要静态的背景且拍摄的时候画面的抖动尽可能小;
  • 3)文章的方法是偏向于人像的;

在下图中展示的是文章的方法的使用流程:
在这里插入图片描述

2. 方法设计

2.1 整体pipline

文章的方法结构见下图所示:
在这里插入图片描述
文章的方法主要划分为两个部分:

  • 1)由CS模块构建的编码器与解码器组合生成前景区域的彩色预测结果(fg)和alpha图;
  • 2)以训练好的网络作为teacher,再加上GAN去判断融合结果是否真实,从而优化matting的融合效果;

2.2 Adobe数据集上的监督训练

文章的方法在Adobe Matting Dataset上剔除一些包含透明目标(如玻璃杯)的图片(最后得到280张)进行训练。文章的网络包含包含4部分的输入:

  • 1)图像 I I I,该图像是背景图 B ‘ B^{‘} B和前景进行融合的结果;
  • 2)背景图 B ‘ B^{‘} B,该图像是选中的背景图,但是在实际过程中其与真实的背景 B B B是不太一样的,文章中为了拉近这两个图片的差异,在真实背景 B B B上做 γ ∼ N ( 1 , 1.02 ) \gamma\sim\mathcal{N}(1,1.02) γN(1,1.02)的gamma矫正,或是在前景区域添加 η ∼ N ( μ ∈ [ − 1 , 7 ] , σ ∈ [ 2 , 6 ] ) \eta\sim\mathcal{N}(\mu\in[-1,7],\sigma\in[2,6]) ηN(μ[1,7],σ[2,6])的高斯噪声;
  • 3)软分割的结果 S S S,文章中是通过分割网络分割得到,将得到的分割结果进行5次腐蚀和10次膨胀,之后施加 σ = 5 \sigma=5 σ=5的高斯滤波。为了更近一步模拟分割不理想的情况,文章会对分割结果使用更大力度的腐蚀和膨胀等操作;
  • 4)前后帧序列 M M M,文章还引入视频前后帧来进行信息的补充,这里采用的是前后2帧的灰度图 { I − 2 T , I − T , I T , I 2 T } \{I_{-2T},I_{-T},I_{T},I_{2T}\} { I2T,IT,IT,I
### 回答1: 背景抠图(Background Matting)是一种计算机视觉技术,可以将前景对象从背景中分离出来并以透明形式呈现,常用于视频合成、虚拟背景、视频美颜等应用中。传统的背景抠图方法需要在拍摄时使用绿色或蓝色幕布作为背景,通过色彩分离的方式将前景和背景分离。而现代的背景抠图方法则利用深度学习模型,通过训练大量的数据来学习前景和背景之间的区别,从而实现更加精准的抠图效果。 ### 回答2: 背景去除是一种图像处理方法,通过将图像中的前景与背景分离,在保留前景内容的同时消除背景噪声。背景去除被广泛应用于图像处理、计算机视觉、计算机图形学、人工智能等领域。 背景去除主要分为两种方法:基于颜色模型的方法和基于深度学习的方法。基于颜色模型的方法常用于处理静态图像,通过对颜色的阈值判断将前景与背景分离。而基于深度学习的方法则是通过训练神经网络来自动从图像中学习前景与背景的差异,对目标进行精确的分离。 背景去除对于实时视频分析与处理十分重要,例如视频会议、智能家居、自动驾驶等应用,都需要时刻对图像中的前景与背景进行识别与分离。 目前,传统算法在处理复杂场景时效果较差,而基于深度学习的方法如背景Matting则能够更准确、更高效地完成任务。背景Matting不仅可以进行前景背景分离,还能够保留前景中的半透明部分。 总之,背景去除是图像处理技术中一项重要的任务,可以有效提高图像质量和分析效率。随着深度学习技术的不断发展,背景去除的效果和应用场景将会得到进一步拓展。 ### 回答3: 背景抠图(Background Matting)是一种对图像进行处理的方法,其目的是将图像中某个区域的前景物体从背景中分离出来。这个方法主要是在计算机视觉和计算机图形学领域中应用。背景抠图的主要应用是对图像进行剪裁、合成和增强等处理,使得图像更符合我们所需的内容和效果。 传统的背景抠图方法主要采用图像的色彩和亮度进行分析,将图像中颜色相近、亮度相似的背景元素进行合并,然后用遮罩层将背景与前景分离,达到抠图的效果。但是由于图像中背景和前景的复杂度和分布情况各不相同,在某些情况下,传统的抠图方法并不能分离出完整的前景物体。 为了解决这个问题,研究者们提出了更加高级的背景抠图方法,如深度学习和人工智能。这些新的方法能够更加准确地分离出前景和背景,还能够使前景与背景之间的过渡更加自然。同时,这些方法还具有很高的自适应性,能够处理各种不同颜色和亮度的图像,从而实现更加精准的图像抠图效果。 总之,背景抠图是一种非常重要的图像处理方法,能够广泛应用于电影制作、广告设计、人像处理、虚拟现实等领域,随着研究者们的不断努力,背景抠图方法将会更加成熟和完善,为我们带来更好的视觉体验和图像处理效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值