MV:成像几何(1)

1. 实物与图片坐标之间的转换

示例:用图像引导机器人的针头插入
任务:根据器官的透视投影图像进行多根针插入
真实世界坐标中的目标物体被摄像头捕捉到,并在图片坐标中存储为图片。(假设所有目标物都在同一平面)机器人以此为判断依据,把针头插入目标物。

1.1 校准

Calibration校准,是识别转换参数的过程
在这里插入图片描述

图片:
[ x y ] \begin{bmatrix} x \\ y \end{bmatrix} [xy]
物体:
[ X Y ] \begin{bmatrix} X \\ Y \end{bmatrix} [XY]
[ x y ] = P R T [ X Y ] \begin{bmatrix} x \\ y \end{bmatrix}=PRT \begin{bmatrix} X \\ Y \end{bmatrix} [xy]=PRT[XY]
T: translation平移 R: rotation旋转 P:perspective projection透视投影
T ( − w ) : [ X Y ] + [ − v x − v y ] = [ X ′ Y ′ ] T(-w):\begin{bmatrix} X \\ Y \end{bmatrix}+ \begin{bmatrix} -v_x \\ -v_y \end{bmatrix}= \begin{bmatrix} X' \\ Y' \end{bmatrix} T(w):[XY]+[vxvy]=[XY]

R ( − α ) : [ c o s α − s i n α s i n α c o s α ] [ X ′ Y ′ ] = [ X ′ ′ Y ′ ′ ] R(-\alpha):\begin{bmatrix} cos\alpha & -sin\alpha\\ sin\alpha & cos\alpha \end{bmatrix} \begin{bmatrix} X' \\ Y' \end{bmatrix} =\begin{bmatrix} X'' \\ Y'' \end{bmatrix} R(α):[cosαsinαsinαcosα][XY]=[XY]
P : − β [ X ′ ′ Y ′ ′ ] = [ x y ] P: -\beta\begin{bmatrix} X'' \\ Y'' \end{bmatrix}=\begin{bmatrix} x \\ y \end{bmatrix} P:β[XY]=[xy]
T : [ x y ] = [ a 11 a 12 a 13 a 21 a 22 a 23 ] [ X Y 1 ] T:\begin{bmatrix} x \\ y \end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} T:[xy]=[a11a21a12a22a13a23]XY1
a i j : a_{ij}: aij:transformation parameters转换参数
[ x y ] = [ a 11 a 12 a 13 a 21 a 22 a 23 ] [ X Y 1 ] = [ X Y 1 0 0 0 0 0 0 X Y 1 ] [ a 11 a 12 a 13 a 21 a 22 a 23 ] \begin{bmatrix} x \\ y \end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&a_{13} \\ a_{21}&a_{22}&a_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}= \begin{bmatrix} X&Y&1&0&0&0 \\ 0&0&0&X&Y&1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21}\\a_{22}\\a_{23} \end{bmatrix} [xy]=[a11a21a12a22a13a23]XY1=[X0Y0100X0Y01]a11a12a13a21a22a23
[ x 1 y 1 x 2 y 2 x N y N ] = [ X 1 Y 1 1 0 0 0 0 0 0 X 1 Y 1 1 X 2 Y 2 1 0 0 0 0 0 0 X 2 Y 2 1 X N Y N 1 0 0 0 0 0 0 X N Y N 1 ] [ a 11 a 12 a 13 a 21 a 22 a 23 ] \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ \\ x_N\\y_N\end{bmatrix}=\begin{bmatrix} X_1&Y_1&1&0&0&0 \\ 0&0&0&X_1&Y_1&1 \\ X_2&Y_2&1&0&0&0\\0&0&0&X_2&Y_2&1\\\\X_N&Y_N&1&0&0&0\\0&0&0&X_N&Y_N&1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21}\\a_{22}\\a_{23} \end{bmatrix} x1y1x2y2xNyN=X10X20XN0Y10Y20YN01010100X10X20XN0Y10Y20YN010101a11a12a13a21a22a23
a = ( X T X ) − 1 X T x a=(X^TX)^{-1}X^Tx a=(XTX)1XTx是最小误差 ∣ ∣ x − X a ∣ ∣ 2 ||x-Xa||^2 xXa2的解(最小二乘逼近)。
(最小二乘逼近的详细推导在supply中)

假设我们做了一系列的实验,期望输出 y y y被一个关于 t t t的线性函数近似, y = C + D t y=C+Dt y=C+Dt
y 1 = C + D t 1 y 2 = C + D t 2 . . . y N = C + D t N → [ x 1 y 1 . . . y N ] = [ 1 t 1 1 t 2 . . . 1 t N ] [ C D ] → b = A x \begin{matrix} y_1=C+Dt_1 \\ y_2=C+Dt_2\\...\\y_N=C+Dt_N \end{matrix}\rightarrow \begin{bmatrix} x_1 \\ y_1 \\ ... \\ y_N\end{bmatrix}= \begin{bmatrix} 1&t_1 \\ 1&t_2 \\ ... \\ 1&t_N \end{bmatrix}\begin{bmatrix} C \\ D \end{bmatrix} \rightarrow b=Ax y1=C+Dt1y2=C+Dt2...yN=C+DtNx1y1...yN=11...1t1t2tN[CD]b=Ax
A T A x = A T b → A T A [ C ˉ D ˉ ] = A T b → [ C ˉ D ˉ ] = ( A T A ) − 1 A T b → [ C ˉ D ˉ ] = [ N ∑ t i ∑ t i ∑ t i 2 ] − 1 [ ∑ y i ∑ t i y i ] A^TAx=A^Tb\rightarrow A^TA\begin{bmatrix} \bar{C} \\ \bar{D} \end{bmatrix}=A^Tb\rightarrow \begin{bmatrix} \bar{C} \\ \bar{D} \end{bmatrix}=(A^TA)^{-1}A^Tb\rightarrow \begin{bmatrix} \bar{C} \\ \bar{D} \end{bmatrix}=\begin{bmatrix} N&\sum t_i \\ \sum t_i & \sum t_i^2\end{bmatrix}^{-1} \begin{bmatrix} \sum y_i\\ \sum t_iy_i \end{bmatrix} ATAx=ATbATA[CˉDˉ]=ATb[CˉDˉ]=(ATA)1ATb[CˉDˉ]=[Ntititi2]1[yitiyi]

2. 齐次坐标

Homogeneous coordinates齐次坐标,齐次向量对应于一条经过原点的直线。
在这里插入图片描述
[ x y z ] ↔ [ k x k y k z 1 ] , k ≠ 0 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \leftrightarrow \begin{bmatrix} kx \\ ky \\ kz\\1 \end{bmatrix},k\neq0 xyzkxkykz1,k=0
齐次坐标的优势:平移和透视变换可以用矩阵形式表示,连续几何变换可以表示为具有矩阵乘法的一系列矩阵。

图像点:
u i = [ x i y i ] → u ^ i = [ k x i k y i k ] u_i=\begin{bmatrix} x_i \\ y_i \end{bmatrix} \rightarrow \hat u_i=\begin{bmatrix} kx_i \\ ky_i \\ k \end{bmatrix} ui=[xiyi]u^i=kxikyik
实物点:
X 0 = [ x 0 y 0 z 0 ] → X ^ 0 = [ k x 0 k y 0 k z 0 k ] X_0=\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \rightarrow \hat X_0=\begin{bmatrix} kx_0 \\ ky_0 \\ kz_0 \\ k \end{bmatrix} X0=x0y0z0X^0=kx0ky0kz0k
在齐次坐标的平移:
[ x y z 1 ] n e w = [ 1 0 0 t x 0 1 0 t y 0 0 0 1 ] [ x y z 1 ] \begin{bmatrix} x \\ y \\ z\\1 \end{bmatrix}_{new}= \begin{bmatrix} 1&0&0&t_x \\ 0&1&0&t_y \\ 0&0&0&1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} xyz1new=100010000txty1xyz1
T − 1 = [ 1 0 0 − t x 0 1 0 − t y 0 0 1 − t z 0 0 0 1 ] T^{-1}=\begin{bmatrix} 1&0&0&-t_x \\ 0&1&0&-t_y \\ 0&0&1&-t_z\\0&0&0&1 \end{bmatrix} T1=100001000010txtytz1
缩放:
S = [ S x 0 0 0 0 S y 0 0 0 0 S z 0 0 0 0 1 ] S=\begin{bmatrix} S_x&0&0&0 \\ 0&S_y&0&0 \\ 0&0&S_z&0\\0&0&0&1 \end{bmatrix} S=Sx0000Sy0000Sz00001
旋转:
在这里插入图片描述
R z , θ = [ c o s θ s i n θ 0 0 − s i n θ c o s θ 0 0 0 0 1 0 0 0 0 1 ] R x , α = [ 1 0 0 0 0 c o s α s i n α 0 0 − s i n α c o s α 0 0 0 0 1 ] R y , β = [ c o s β 0 − s i n β 0 0 1 0 0 s i n β 0 c o s β 0 0 0 0 1 ] R_{z,\theta}=\begin{bmatrix} cos\theta & sin\theta & 0 & 0 \\ -sin\theta & cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} R_{x,\alpha}=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & cos\alpha & sin\alpha & 0 \\ 0 & -sin\alpha & cos\alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} R_{y,\beta}=\begin{bmatrix} cos\beta &0 & -sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ sin\beta & 0 & cos\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Rz,θ=cosθsinθ00sinθcosθ0000100001Rx,α=10000cosαsinα00sinαcosα00001Ry,β=cosβ0sinβ00100sinβ0cosβ00001
复合变换:
A = R z , θ S T → P ′ = A P A=R_{z,\theta}ST \rightarrow P'=AP A=Rz,θSTP=AP
透视投影:从平面上的一点到三维空间的反透视变换对应于一条直线,即一个齐次向量。
在这里插入图片描述
Z > > f Z>>f Z>>f
相似三角形:
x f = − X Z − f = X f − Z \frac{x}{f}=-\frac{X}{Z-f}=\frac{X}{f-Z} fx=ZfX=fZX
y f = − Y Z − f = Y f − Z \frac{y}{f}=-\frac{Y}{Z-f}=\frac{Y}{f-Z} fy=ZfY=fZY
矩阵形式的透视投影:
c h = P w h = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 − 1 f 1 ] [ k X k Y k Z k ] = [ k X k Y k Z − k Z f + k ] c_h=Pw_h=\begin{bmatrix} 1 &0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{f} & 1 \end{bmatrix}\begin{bmatrix} kX \\ kY \\ kZ \\ k \end{bmatrix}= \begin{bmatrix} kX \\ kY \\ kZ \\ -\frac{kZ}{f}+k \end{bmatrix} ch=Pwh=10000100001f10001kXkYkZk=kXkYkZfkZ+k
图像点的笛卡尔坐标:
c = [ x y z ] = [ f X f − Z f Y f − Z f Z f − Z ] c= \begin{bmatrix} x \\ y \\ z \\ \end{bmatrix}= \begin{bmatrix} \frac{fX}{f-Z} \\ \frac{fY}{f-Z} \\ \frac{fZ}{f-Z} \end{bmatrix} c=xyz=fZfXfZfYfZfZ
反透视变换映射图像点回到三维:
W h = P − 1 C h W_h=P^{-1}C_h Wh=P1Ch
P − 1 = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 − 1 f 1 ] P^{-1}=\begin{bmatrix} 1 &0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{f} & 1 \end{bmatrix} P1=10000100001f10001

3. Camera Model and Calibration

Camera Model
实际中,摄像机和世界系统不一致,安装在gimbal万向架上的摄像机可以调整 x x x轴和 X X X轴之间的角度和 z z z轴和 Z Z Z轴之间的角度。

1.从世界坐标原点到万向节中心的平移
2. x x x轴平移(绕 z z z轴旋转一个角度 θ \theta θ)
-平移角是在 x x x轴和 X X X轴之间测量的。
3. z z z轴的倾斜(绕 x x x轴旋转一个 α \alpha α)
-倾斜角度是测量之间的 z z z Z Z Z轴。
4.从万向节中心到摄像机坐标系原点的平移。
5.从意象点到世界点的透视转换。
C h = P T ( r ) R x ( α ) R z ( θ ) T ( w 0 ) W h C_h=PT(r)R_x(\alpha)R_z(\theta)T(w_0)W_h Ch=PT(r)Rx(α)Rz(θ)T(w0)Wh
在齐次坐标下,场景点或实物点在世界坐标 X X X上的投影到图像点 u u u由一个简单的线性映射给出。
u = M X → [ k X k Y k Z k ] = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] [ X Y Z 1 ] u=MX\rightarrow \begin{bmatrix} kX \\ kY \\ kZ \\ k \end{bmatrix}= \begin{bmatrix} a_{11} & a_{12} &a_{13}&a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\ a_{31} & a_{32} &a_{33}&a_{34}\\ a_{41} & a_{42} &a_{43}&a_{44}\\ \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} u=MXkXkYkZk=a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44XYZ1
如果缩放系数为1:
[ X Y Z 1 ] = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] [ x y z 1 ] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}= \begin{bmatrix} a_{11} & a_{12} &a_{13}&a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\ a_{31} & a_{32} &a_{33}&a_{34}\\ a_{41} & a_{42} &a_{43}&a_{44}\\ \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} XYZ1=a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44xyz1
在接收平面上 z = 0 z=0 z=0,忽略掉 z z z项:
[ x y 1 ] = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 1 ] [ X Y Z 1 ] \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}= \begin{bmatrix} a_{11} & a_{12} &a_{13}&a_{14}\\ a_{21} & a_{22} &a_{23}&a_{24}\\ a_{31} & a_{32} &a_{33}&a_{34}\\ a_{41} & a_{42} &a_{43}&1\\ \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} xy1=a11a21a31a41a12a22a32a42a13a23a33a43a14a24a341XYZ1
有11个自由参数,可以改写为:
[ x y ] = X α X = [ X Y Z 1 0 0 0 0 − x X − x Y − x Z 0 0 0 0 X Y Z 1 − y X − y Y − y Z ] α = [ α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 10 α 11 ] \begin{bmatrix} x \\ y \end{bmatrix}=X\alpha \\ X= \begin{bmatrix} X&Y&Z&1&0&0&0&0&-xX&-xY&-xZ \\ 0 &0& 0& 0 &X&Y&Z&1&-yX&-yY&-yZ \end{bmatrix} \alpha= \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \\ \alpha_7 \\ \alpha_8 \\ \alpha_9 \\ \alpha_{10} \\ \alpha_{11} \\ \end{bmatrix} [xy]=XαX=[X0Y0Z0100X0Y0Z01xXyXxYyYxZyZ]α=α1α2α3α4α5α6α7α8α9α10α11

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值