信用卡欺诈检测案例 -- 机器学习项目基础篇(2)

这个案例面临的挑战是识别欺诈性信用卡交易,以便信用卡公司的客户不会因为他们没有购买的物品而被收取费用。

信用卡欺诈检测中涉及的主要挑战是:

  1. 每天都要处理大量数据,模型构建必须足够快,以便及时响应骗局。
  2. 不平衡的数据,即大多数交易(99.8%)不是欺诈性的,这使得检测欺诈性交易变得非常困难。
  3. 数据可用性,因为数据大部分是私有的。
  4. 错误分类的数据可能是另一个主要问题,因为并非每一笔欺诈性交易都被捕获和报告。
  5. 骗子对模型使用的自适应技术。

如何应对这些挑战?

  1. 使用的模型必须足够简单和快速,以检测异常并尽快将其分类为欺诈交易。
  2. 不平衡可以通过适当地使用一些方法来处理,我们将在下一段中讨论这些方法。
  3. 为了保护用户的隐私,可以减少数据的维度。
  4. 必须采用更可靠的来源,对数据进行双重检查,至少用于训练模型。
  5. 我们可以让模型变得简单和可解释,这样当骗子通过一些调整来适应它时,我们就可以有一个新的模型来部署。

以下代码均在jupyter notebook中工作。
您可以从此链接下载数据集 https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

导入所有必要的库

# import the necessary packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import gridspec

加载数据

data = pd.read_csv("credit.csv")

展示数据

data.head()

在这里插入图片描述

描述数据

print(data.shape)
print(data.describe())

在这里插入图片描述
是时候解释我们正在处理的数据了。

fraud = data[data['Class'] == 1]
valid = data[data['Class'] == 0]
outlierFraction = len(fraud)/float(len(valid))
print(outlierFraction)
print('Fraud Cases: {}'.format(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值