基于机器学习的黄金价格预测案例

在这篇文章中,我们将从头开始做一个关于黄金价格预测的项目。要构建任何数据科学项目,我们必须遵循某些步骤,这些步骤不需要以相同的顺序进行。在我们的项目中,我们将按顺序完成这些步骤。

1. 问题表述

问题表述是我们在开始任何项目之前所做的最重要的步骤之一。必须对我们的数据科学项目的目标有一个明确的想法。在我们的例子中,这个项目的目标是分析黄金的价格。黄金的价格是不稳定的,它们随着时间的推移而迅速变化。我们这个项目的主要目的是预测每单位黄金的价格。

导入库

我们将在一个地方导入本文中使用的所有库,这样就不必每次使用时都导入,这将保存我们的时间和精力。

  • Pandas -一个构建在NumPy之上的Python库,用于有效的矩阵乘法和矩阵操作,它也用于数据清理,数据合并,数据整形和数据聚合
  • Numpy -一个用于数值数学计算和处理多维ndarray的Python库,它也有一个非常大的数学函数集合来操作这个数组
  • Matplotlib -它用于绘制2D和3D可视化图,它还支持各种输出格式,包括图形
  • Seaborn - seaborn库是在Matplotlib之上创建的,用于绘制漂亮的图。
import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore") 
sns.set_style("darkgrid", {
   "grid.color": ".6", 
						"grid.linestyle": ":"})

from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline 
from sklearn.linear_model import Lasso

from sklearn.ensemble import RandomForestRegressor 
from xgboost import XGBRegressor
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error 
from sklearn.model_selection import GridSearchCV

加载数据集

# read dataset using pndas function
# use parse_dates argument to change datetime dtype
# 数据集链接: https://pan.baidu.com/s/1RiOzXhG4zzM6xeWqcmqY6g?pwd=htf4 提取码: htf4 
dataset = pd.read_csv("gold_price_data.csv",
                      parse_dates=["Date"])

# information about the dataset
dataset.info()

输出

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2290 entries, 0 to 2289
Data columns (total 6 columns):
 #   Column   Non-Null Count  Dtype         
---  ------   --------------  -----         
 0   Date     2290 non-null   datetime64[ns]
 1   SPX      2290 non-null   float64       
 2   GLD      2290 non-null   float64       
 3   USO      2290 non-null   float64       
 4   SLV      2290 non-null   float64       
 5   EUR/USD  2290 non-null   float64       
dtypes: datetime64[ns](1), float64(5)
memory usage: 107.5 KB

2. 数据预处理

缺失值/重复值

缺失值对我们的模型训练有非常严重的影响。有些模型,如线性回归,不适合含有缺失值的数据集。然而,有一些模型即使在缺失数据集,如随机森林,也能很好地工作。但在处理数据集时,首先处理缺失值始终是一个好的做法。此外,需要注意的一点是,当我们使用pandas加载数据时,它会自动检测null值并将其替换为NAN。

# Missing Values/Null Values Count
dataset.isna().sum().sort_values(ascending=False)

输出

Date       0
SPX        0
GLD        0
USO        0
SLV        0
EUR/USD    0
dtype: int64

相关性

我们应该始终检查数据集的两列之间是否存在任何相关性。如果两个或多个列相互关联,并且它们都不是目标变量,那么我们必须使用一种方法来删除这种相关性。一些流行的方法是PCA(主成分分析)。我们还可以删除两个列中的一个,或者使用这两个列创建一个新列。

# Calculate correlation matrix
correlation = dataset.corr()

# Create heatmap
sns.heatmap(
### 黄金价格API的相关性和解决方案 对于访问受限的数据集,如 `ELiRF/dacsa` 的情况[^1],这表明当前用户未被授权访问该资源。然而,这一问题与黄金价格API并无直接关联。 关于黄金价格的API服务,存在多种全球范围内的选项可以满足需求[^2]。这些API通常提供了实时或历史数据查询功能,支持开发者集成到自己的应用中。以下是几个常见的黄金价格API: #### 常见的黄金价格API 1. **Alpha Vantage** Alpha Vantage 提供了一个免费且易于使用的金融数据API接口,其中包括贵金属的价格信息。可以通过其文档获取详细的调用方式。 ```python import requests api_key = 'YOUR_API_KEY' function = 'CURRENCY_EXCHANGE_RATE' # 使用货币兑换作为示例替代品 from_currency = 'XAU' # 表示黄金 (Gold) to_currency = 'USD' url = f'https://www.alphavantage.co/query?function={function}&from_currency={from_currency}&to_currency={to_currency}&apikey={api_key}' response = requests.get(url) data = response.json() print(data) ``` 2. **Metals-API** Metals-API 是专注于贵金属(包括黄金、白银等)的一个专门化API平台。它允许开发人员轻松检索最新的市场报价以及历史记录。 ```python import requests access_key = 'your_access_key_here' base_url = 'https://metals-api.com/api/latest?access_key=' + access_key + '&base=USD&symbols=XAU' res = requests.get(base_url).json() gold_price_usd = res['rates']['XAU'] print(f"The current Gold Price in USD is {gold_price_usd}") ``` 以上两个例子展示了如何通过不同的API来取得黄金的价格信息。需要注意的是,在实际部署前应当阅读各服务商的具体条款并申请相应的密钥。 #### 授权与权限管理的重要性 当尝试使用任何受保护的服务时,比如前面提到无法访问的数据集或者某些高级别的金融市场数据源,都需要先完成身份验证流程才能继续操作。因此建议前往目标网站注册账号,并遵循指引加入白名单或是购买订阅计划获得完全使用权。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值