信道
一、无线信道
无限信道是将信号加载到电磁波上进行传输,按照电磁波频率的不同,电磁波传播分为多种。
地球大气 :地面,对流层,平流层,电离层。
1. 地波
频率小于2MHz
有绕射能力
2.天波
频率2MHz~30MHz
被电离反射
3.视距传播
频率>30MHz
直线传播。穿透电离层
4.其他
频率越高绕射能力越差。
微波中继,卫星中继
散射通信:电离层散射(30-60)MHz,对流层散射(100-4000MHz)
流行余迹散射
二、有线信道
明线,对称电缆,同轴电缆,光纤
三、信道数学模型
乘性干扰(衰减)
加性噪声
1.调制信道模型
经过调制后经过信道发送
叠加有噪声的线性时变/时不变系统
r
(
t
)
=
c
(
t
)
s
i
(
t
)
+
n
(
t
)
s
0
(
t
)
=
c
(
t
)
s
i
(
t
)
S
0
(
w
)
=
C
(
w
)
S
i
(
w
)
r(t)=c(t)s_i(t)+n(t)\\ s_0(t)=c(t)s_i(t)\\ S_0(w)=C(w)S_i(w)
r(t)=c(t)si(t)+n(t)s0(t)=c(t)si(t)S0(w)=C(w)Si(w)
相乘而非卷积
2. 恒参信道特性
H
(
w
)
=
∣
H
(
w
)
∣
e
j
ϕ
(
w
)
H(w)=|H(w)|e^{j\phi(w)}
H(w)=∣H(w)∣ejϕ(w),有频幅特性和相频特性
无失真传输:
H
(
w
)
=
K
e
−
j
w
t
d
H(w)=Ke^{-jwt_d}
H(w)=Ke−jwtd 反之为失真传输
3. 随参信道
(更多请参考无线通信基础)
衰减随时间变换
时延随时间变换
多路径传播
4.编码信道模型
调制信道对信号影响是乘性干扰
k
(
t
)
k(t)
k(t)和加性噪声信号
n
(
t
)
n(t)
n(t)是信号的波形发生失真。
编码信道的输入输出是数字序列,所以用转移概率来描述编码信道特性。
如上图所示。
4.噪声
人为噪声
自然噪声,热噪声是一种重要的自然噪声。来自电阻性元器件中电子热运动。
在一般通信系统的工作频谱范围内的频谱是均匀分布的,好像白光的频谱在可见光的频谱范围内均匀分布一样,所以热噪声又称为白噪声。其统计特性服从高斯分布,又称高斯白噪声。
窄带噪声:连续的已调正弦波,振幅恒定的单一频率正弦波。
窄带噪声等效带宽如下图所示:
B
n
=
∫
−
∞
+
∞
P
n
(
f
)
d
f
2
P
n
(
f
0
)
=
∫
0
+
∞
P
n
(
f
)
d
f
P
n
(
f
0
)
B_n=\frac{\int_{-\infty}^{+\infty}P_n(f)df}{2P_n(f_0)}=\frac{\int_{0}^{+\infty}P_n(f)df}{P_n(f_0)}
Bn=2Pn(f0)∫−∞+∞Pn(f)df=Pn(f0)∫0+∞Pn(f)df
利用此概念,可认为窄带噪声的功率谱密度在带宽
B
n
B_n
Bn内恒定。
五、信道容量
定义:信道无差错传输时的最大平均信息速率,一个上界
1.离散信道容量
定义1:每个符号能够传输的平均信息量最大值表示信道容量。
定义2:单位时间内能够传输平均信息量最大值
从信息量的概念得知,发送
x
i
x_i
xi得到
y
j
y_j
yj的信息量为发送
x
i
x_i
xi的信息量减去收到
y
j
y_j
yj后对
x
i
x_i
xi的不确定程度。
对所有的
x
i
x_i
xi和
y
j
y_j
yj取平均值,得出收到一个符号时获得的平均(根据概率加权平均)信息量:
平均信息量/符号=
−
∑
i
=
1
n
p
(
x
i
)
l
o
g
(
p
(
x
i
)
)
−
[
−
∑
j
=
1
m
p
(
y
i
)
∑
i
=
1
n
p
(
x
i
/
y
j
)
l
o
g
2
(
p
(
x
i
/
y
j
)
)
]
=
H
(
x
)
−
H
(
x
/
y
)
-\sum_{i=1}^{n}p(x_i)log(p(x_i))-[-\sum_{j=1}^{m}p(y_i)\sum_{i=1}^{n}p(x_i/y_j)log_2(p(x_i/y_j))]\\ =H(x)-H(x/y)
−i=1∑np(xi)log(p(xi))−[−j=1∑mp(yi)i=1∑np(xi/yj)log2(p(xi/yj))]=H(x)−H(x/y)
H
(
x
)
H(x)
H(x)为信源的熵,
H
(
x
/
y
)
H(x/y)
H(x/y)为接收到
y
j
y_j
yj后发送
x
i
x_i
xi的信息量。
我们想要确定发送
x
i
x_i
xi的信息量,收到
y
j
y_j
yj是我们的先验,因此是信息量相减。
最大:对一切可能的信源概率分布求最大值
C
=
m
a
x
p
(
x
)
[
H
(
x
)
−
H
(
x
/
y
)
]
C=max_{p(x)}[H(x)-H(x/y)]
C=maxp(x)[H(x)−H(x/y)]
假设每秒传输符号数为
r
r
r则:
C
t
=
m
a
x
p
(
x
)
{
r
[
H
(
x
)
−
H
(
x
/
y
)
]
}
C_t=max_{p(x)}\{r[H(x)-H(x/y)]\}
Ct=maxp(x){r[H(x)−H(x/y)]}
2.连续信道容量
连续信道的信道容量也有两种,这里我们只介绍按单位时间计算的。
白噪声下的连续信道容量:
C
t
=
B
l
o
g
2
(
1
+
S
N
)
=
B
l
o
g
2
(
1
+
S
n
0
B
)
C_t=Blog_2(1+\frac{S}{N})=Blog_2(1+\frac{S}{n_0B})
Ct=Blog2(1+NS)=Blog2(1+n0BS)
B
B
B为带宽,
S
S
S为信道平均功率,
N
N
N为噪声功率,
n
0
n_0
n0噪声单边功率,则
N
=
n
0
B
N=n_0B
N=n0B