算法设计第十三章 随机算法 randomed algorithm3



1 Chernoff Bounds

随机算法的核心是分析解的期望,但是我们不总是得到期望。因此要分析随机变量与期望之间的关系。

1.1 Markov’s Inequality 马尔可夫不等式

马尔可夫不等式
P ( X ≥ a ) ≤ E ( X ) / a . P(X\ge a) \leq E(X)/a. P(Xa)E(X)/a.
证明如下:
E ( X ) = ∑ x P ( x ) ≥ ∑ x ≥ a x P ( x ) ≥ a P ( X > a ) E(X)=\sum xP(x)\geq \sum_{x\geq a}x P(x)\geq aP(X>a) E(X)=xP(x)xaxP(x)aP(X>a)
马尔科夫不等式是弱的,因为界限太大。但是它是通用的,不需要对随机变量有任何假设。

1.2 Chebychev’s Inequality 切比雪夫不等式

切比雪夫不等式
P ( ∣ X − E ( X ) ∣ ≥ a ) ≤ V a r ( X ) / a 2 . P(|X-E(X)|\ge a) \leq Var(X)/a^2.\\ P(XE(X)a)Var(X)/a2.
根据马尔科夫不等式推导而出。证明如下:
V a r ( X ) = E [ ( X − E ( X ) ) 2 ] P ( ∣ X − E ( X ) ∣ ≥ a ) = P [ ( X − E ( X ) ) 2 ≥ a 2 ] ≤ E [ ( X − E ( X ) ) 2 ] / a 2 = V a r [ X ] / a 2 Var(X)=E[(X-E(X))^2]\\ P(|X-E(X)|\ge a)=P[(X-E(X))^2\ge a^2]\leq E[(X-E(X))^2]/a^2\\ =Var[X]/a^2 Var(X)=E[(XE(X))2]P(XE(X)a)=P[(XE(X))2a2]E[(XE(X))2]/a2=Var[X]/a2

1.3 Sum of independent 独立变量求和

1 X 1 , . . . X n X_1,...X_n X1,...Xn是随机{0,1}变量, P ( X i = 1 ) = p i P(X_i=1)=p_i P(Xi=1)=pi, μ = E [ X ] = ∑ p i \mu=E[X]=\sum p_i μ=E[X]=pi
0 < δ < 1 , P [ X ≥ ( 1 + δ ) μ ] ≤ e − μ δ 2 / 3 δ > 1 , P [ X ≥ ( 1 + δ ) μ ] ≤ e − μ δ l n δ / 3 0 ≤ δ ≤ 1 , P [ X ≤ ( 1 − δ ) μ ] ≤ e − μ δ 2 / 2 0<\delta<1,P[X\ge (1+\delta)\mu]\leq e^{-\mu\delta^2/3}\\ \delta >1, P[X\ge(1+\delta)\mu]\leq e^{-\mu \delta ln\delta/3}\\ 0\leq\delta \leq 1,P[X\leq(1-\delta)\mu]\leq e^{-\mu\delta^2/2} 0<δ<1,P[X(1+δ)μ]eμδ2/3δ>1,P[X(1+δ)μ]eμδlnδ/30δ1,P[X(1δ)μ]eμδ2/2

2 对上述三种情况进行统一:
δ > 0 , P ( X ≥ ( 1 + δ ) μ ) ≤ ( e δ ( 1 + δ ) 1 + δ ) μ \delta>0,P(X\ge (1+\delta)\mu)\leq(\frac{e^\delta}{(1+\delta)^{1+\delta}})^\mu δ>0,P(X(1+δ)μ)((1+δ)1+δeδ)μ

3 遇到不是{-1,1}的情况,期望为0:
X 1 , . . . X n X_1,...X_n X1,...Xn是随机{-1,1}变量, P ( X i = 1 ) = P ( X i = − 1 ) = 0.5 P(X_i=1)=P(X_i=-1)=0.5 P(Xi=1)=P(Xi=1)=0.5, 分布是对称的, δ ≥ 0 \delta \ge 0 δ0,
P [ X ≥ δ ] = P [ X ≤ − δ ] ≤ e − δ 2 2 n P[X\ge \delta]=P[X\le-\delta]\leq e^{-\frac{\delta^2}{2n}} P[Xδ]=P[Xδ]e2nδ2

2 例子

2.1 coin filp

考虑投掷n次硬币, X X X是head的次数, P ( X ≥ n 2 + λ ) P(X\ge \frac{n}{2}+\lambda) P(X2n+λ)
P ( X ≥ m u + λ ) = P ( X ≥ μ ( 1 + λ μ ) ) ≤ e − ( λ μ ) 2 μ 3 P(X\ge mu+\lambda)=P(X\ge \mu(1+\frac{\lambda}{\mu}))\leq e^{-(\frac{\lambda}{\mu})^2\frac{\mu}{3}} P(Xmu+λ)=P(Xμ(1+μλ))e(μλ)23μ

2.2 Load balancing

假设有 n n n个电脑, m m m个任务,给电脑随机分配任务。如何平衡?
X i X_i Xi是电脑 i i i被分配的任务。
P ( m a x ( X i ) > O ( l n n l n l n n ) ) < 1 n P(max(X_i)>O(\frac{ln n}{lnlnn}))<\frac{1}{n} P(max(Xi)>O(lnlnnlnn))<n1
P ( m i n ( X i ) < 1 2 μ ) < 1 n P(min(X_i)<\frac{1}{2}\mu)<\frac{1}{n} P(min(Xi)<21μ)<n1

2.3 set banlancing

m个集合,是[n]的子集,用 n n n-bit,S_i向量表示。将所有集合分为两个部分, m i n m a x ∣ ∑ S i − ∑ S j ∣ ∞ minmax|\sum S_i-\sum S_j|_{\infty} minmaxSiSj,优化问题难解,随机分组。
X i ∈ { 1 , − 1 } X_i\in\{1,-1\} Xi{1,1}表示i元素属于哪个集合。
B i = ∑ X i B_i=\sum X_i Bi=Xi测量元素 i i i的imbalance。
根据1.3 的3
P ( B i > 4 m l n n ) ≤ e − 4 m l n n 2 / ( 2 k ) P(B_i>\sqrt{4mlnn})\le e^{-\sqrt{4mlnn}^2/(2k)} P(Bi>4mlnn )e4mlnn 2/(2k)

2.4 LP

一般情况下,线性规划的解在顶点处取得,因此有很多约束是多余的,对于 d d d维变量,d个约束即可确定该解。换言之,只有d个约束是紧的,剩下的是多余的。
在这里插入图片描述
随机算法通过随机的减去约束,判断减去约束后的解是否违反该约束来判读该约束是否是紧的。如果是紧的,我们将为问题投影到该约束上。
在这里插入图片描述
复杂度分析
T ( n , d ) = T ( n − 1 , d ) + O ( d ) + d / n ( O ( d n ) + T ( n − 1 , d − 1 ) ) T(n,d)=T(n-1,d)+O(d)+d/n(O(dn)+T(n-1,d-1)) T(n,d)=T(n1,d)+O(d)+d/n(O(dn)+T(n1,d1))
在这里插入图片描述

总结

随机算法在过程中允许随机选择,核心是求期望,但是解经常不是期望值,因此用Chernoff Bounds 分析解的范围与概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值