关于 “辛普森悖论“ 的理解

本文探讨了辛普森悖论在视频推荐中的实例,通过对比分组数据与汇总结果,揭示了看似矛盾的现象。重点在于解释这一悖论并提供策略应对

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在研究FM模型的时候,遇到了一个名词:辛普森悖论。

下面来说一下什么是 辛普森悖论。

在对样本集合进行分组研究时,在分组比较中都占优势的一方,在总评中有时反而是失势的一方,这种有悖常理的现象,就成为 “辛普森悖论”。

下面来看个例子:

就用视频推荐的例子,来阐述一下辛普森悖论。
如下两表为某视频应用中男性用户和女性用户点击视频的数据。

表1

视频点击(次)曝光(次)点击率
视频A85301.51%
视频B5115203.36%

表2

视频点击(次)曝光(次)点击率
视频A20125108.01%
视频B9210109.11%

从上述数据中可以看出,无论男性用户还是女性用户,对视频B的点击率都高于视频A,显然推荐系统应该优先考虑向用户推荐视频B

那么,如果忽略性别这个维度,将数据汇总如下表,会得出什么样的结论呢?

表3

视频点击(次)曝光(次)点击率
视频A20930406.88%
视频B14325305.65%

在汇总结果中,视频A的点击率居然比视频B的高。如果根据此进行推荐,将得出与之前结果完全相反的结果,这就是所谓的“辛普森悖论”。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WGS.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值