一文搞清楚单相ab0到dq0的变换

首先,先从simulink里面的 α β 0 \alpha \beta 0 αβ0到dq0的模块以及他的帮助文档说起:
在这里插入图片描述
帮助文档:https://ww2.mathworks.cn/help/releases/R2021b/physmod/sps/powersys/ref/alphabetazerotodq0dq0toalphabetazero.html

模块里有个下拉框,包括了 aligned with A axis 和 90 degrees behind A axis 两种。

  • aligned with A axis的意思是d轴和alpha轴重合,且符合下图时序关系(q轴超前d轴,belta轴超前alpha轴)。
  • 90 degrees behind A axis的意思是 d轴和 滞后于alpha轴90°的角度 重合,换句话说,就是q轴和alpha轴重合。同样,且符合下图时序关系。

在这里插入图片描述
当然,这两种情况下,对 α β 0 \alpha \beta 0 αβ0到dq0的变换矩阵也是不一样的。

  • aligned with A axis下, α β 0 \alpha \beta 0 αβ0到dq0的变换矩阵为:
    在这里插入图片描述
  • 90 degrees behind A axis, α β 0 \alpha \beta 0 αβ0到dq0的变换矩阵:从上文可以知道,该类型相比上一种类型只是将dq0旋转坐标系的初始位置(也就是帮助文档里写的wt=0时)顺时针旋转了90°,因此可以通过将上一种类型的公式的角度加上90°就可以得到这种类型下的变换矩阵
    [ c o s ( w t + 90 ) s i n ( w t + 90 ) − s i n ( w t + 90 ) c o s ( w t + 90 ) ] = [ s i n ( w t ) − c o s ( w t ) c o s ( w t ) s i n ( w t ) ] \begin{bmatrix} cos(wt+90) & sin(wt+90) \\ -sin(wt+90) & cos(wt+90) \end{bmatrix} =\begin{bmatrix} sin(wt) & -cos(wt) \\ cos(wt) & sin(wt) \end{bmatrix} [cos(wt+90)sin(wt+90)sin(wt+90)cos(wt+90)]=[sin(wt)cos(wt)cos(wt)sin(wt)]
    上面只列出了 α β \alpha\beta αβ 到dq的矩阵。
    这两种类型只能将 α 超前 β \alpha超前\beta α超前β 的波形转换为直流量的dq量,无论是那种形式的超前,包括但不限于
类型 α β \alpha\beta αβ 相位分别为0和-pi/2 α β \alpha\beta αβ 相位分别为pi/2和0 α β \alpha\beta αβ 相位分别为pi和pi/2
aligned with A axisdq分别为0和-11和00和1
90 degrees behind A axisdq分别为1和00和1-1和0

从上表可以看出,两种类型的选择,结果只是dq值哪个是0哪个是正哪个是负的影响,不会对结果影响很大,只影响结果形式。
但是如果将 α 滞后于 β \alpha滞后于\beta α滞后于β 的波形进行变换会出现结果不是直流,而是正弦波的情况。
此时就需要自己构建转换矩阵,也就是参考文章里的dq变换矩阵形式2:

在这里插入图片描述
可以看出, α 滞后于 β \alpha滞后于\beta α滞后于β 的变换矩阵和 α 超前于 β \alpha超前于\beta α超前于β 中 90 degrees behind A axis时的变换矩阵类似,只是将负号换了位置。
同样,这种变换矩阵应该也对应另外一种形式。但无论哪种形式,处理 α 滞后于 β \alpha滞后于\beta α滞后于β的波形时,变换结果只影响正负号,不影响具体数值。

https://blog.csdn.net/qq_38847810/article/details/105667904

另外还参考了以下:

[1]付兴贺,陈锐.电机中ABC到dq0坐标变换的梳理与辨析[J].微特电机,2021,49(04):1-8+13.
链接为http://www.doc88.com/p-77787160522236.html
上文中,图2-(a)(b)就是对应 α 超前 β \alpha超前\beta α超前β的两种形式,变换矩阵为式(27)(30),其中式(27)只是处理过的了,变换结果如图5-(a)(b)。图2-©就是对应 α 滞后 β \alpha滞后\beta α滞后β的形式,变换矩阵为式(32),和式(30)的区别只是负号的位置,变换结果如图5-©,在处理 α 超前 β \alpha超前\beta α超前β的波形时,结果为正弦波。

[1]游江,林茜,董浩.基于dq坐标变换的单相逆变器控制技术[J].应用科技,2017,44(03):54-60.

单相dq变换锁相程序是一种用于电力系统中控制和保护设备的程序。dq变换是一种将三相电信号转换为两相信号的方法,它可以将电力系统中不平衡和非对称的三相电信号转换为平衡和对称的dq坐标系内的两相信号。 dq变换锁相程序的主要功能是追踪电网电压或电流的相位和幅值,从而实现对电力系统的监控和保护。该程序通过将三相电信号转换为dq坐标系内的两相信号,可以更方便地提取和分析电网中的有用信息,并对电力系统进行控制和调节。 在单相dq变换锁相程序中,首先需要采集三相电压或电流信号,并进行滤波和去噪处理。然后,利用dq变换公式将三相信号转换为dq坐标系内的两相信号,其中d轴信号代表正序分量,q轴信号代表负序分量。 接下来,使用锁相环算法对dq信号进行相位和频率追踪。锁相环算法根据dq信号与参考信号之间的相位差和频率差来调节dq信号的相位和频率,使其与参考信号保持同步。这样,dq信号就可以与电网中的信号保持一致,并能够提供准确的相位和幅值信息。 最后,根据dq信号提供的相位和幅值信息,可以进行电力系统的控制和保护。例如,可以检测电网中的故障和异常情况,并根据需要采取相应的措施,保证电力系统的安全和稳定运行。 总之,单相dq变换锁相程序是一种用于电力系统中控制和保护设备的程序,它通过将三相电信号转换为dq坐标系内的两相信号,并利用锁相环算法对dq信号进行相位和频率追踪,实现对电力系统的监控和保护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值