基于机器人的齐次变换矩阵及其运算

一 齐次变换矩阵及其运算

由于各种原因,变换矩阵应该写成方型形式,33或者44即可。

为保证所表示的矩阵为方阵,如果在同一矩阵中既表示姿态又表示位置,那么在矩阵中加入比例因子使之成为4*4的矩阵即可。
在这里插入图片描述

变换可以定义为空间的一个运动。

已知一直角坐标系中某点坐标,那么该点在另一直角坐标系中的坐标可通过齐次坐标变换来求得。

变换可分为如下形式:

纯平移

纯旋转

平移和旋转的结合

1.平移的齐次变换

空间的某一点在直角坐标系中的平移,由A(X,Y,Z)平移至A’(X’,Y’,Z’),即

在这里插入图片描述
其中

在这里插入图片描述
@1算子左乘:表示点的平移是相对固定坐标系进行的坐标转换。

@2算子右乘:表示点的平移是相对动坐标系进行的坐标转换。

@3该公式亦适用于坐标系的平移转换,物体的平移转换,如机器人手部的平移转换。

在这里插入图片描述
具体解题步骤如下(A’):
(因为是A相对于固定坐标系做平移,所以是左乘)
在这里插入图片描述
因为是A相对于动坐标系做平移,所以是左乘
在这里插入图片描述
2.旋转的齐次变换

点在空间直角坐标系中的旋转如图所示,A(X,Y,Z)绕Z轴旋转sita角后至A’(X’,Y’,Z’),则A与A‘之间的关系为:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

<think>好的,用户想了解机器人学中的齐次变换矩阵的作用和计算方法。我需要先回顾相关知识,然后组织一个清晰的回答。 首先,齐次变换矩阵的作用。根据引用[1]和[3],齐次变换矩阵主要用于坐标系的变换,可以同时表示旋转和平移。这在机器人学中非常重要,比如机械臂的运动学建模,不同连杆之间的位姿关系就需要用齐次矩阵来描述。另外,引用提到它可以将多次变换通过矩阵相乘来实现,这涉及到左乘和右乘的顺序问题,这也是需要解释清楚的点。 然后是计算方法。根据引用[2]和[3],齐次矩阵通常由旋转矩阵和平移向量组成。具体来说,齐次矩阵是一个4x4的矩阵,左上角的3x3部分是旋转矩阵,右上角的3x1是平移向量,最后一行是[0 0 0 1]。例如,绕x轴旋转θ角,平移向量为(a,b,c)的话,对应的齐次矩阵应该如何构造。同时,引用[2]还提到在numpy中可以通过矩阵乘法np.dot来实现多个变换矩阵的连乘,这也需要举例说明,比如先旋转后平移和先平移后旋转的区别,可能涉及左乘和右乘的顺序。 另外,用户提供的引用中有提到齐次变换矩阵的分解,可以分解为平移和旋转的复合,这可能涉及到先旋转后平移或者相反的情况,需要解释清楚这两种情况对应的矩阵形式。 还要注意应用场景。比如在机器人手眼标定(眼在手外或眼在手上)中,齐次矩阵的应用,如引用[2]中的例题。这可能涉及到多个坐标系的转换,比如基座标系、工具坐标系、相机坐标系之间的转换,需要齐次矩阵来简化计算。 需要检查是否有遗漏的知识点。比如齐次坐标的引入原因,即统一平移和旋转为矩阵乘法形式,避免平移作为向量加法的复杂性。同时,齐次变换矩阵的逆矩阵,如何计算逆变换,这也是实际应用中常见的操作,可能引用中的内容没有提到,但属于相关知识。 可能用户需要具体的计算步骤和例子。比如如何将欧拉角或四元数转换为旋转矩阵,再组合成齐次矩阵。或者,给一个具体的坐标变换例子,分步骤计算齐次矩阵的乘积,说明左乘和右乘的区别。 另外,注意回答的结构。先解释作用,再讲计算方法,然后举例应用,最后可能总结注意事项。确保每个部分都引用相关的资料,比如在讲作用时引用[1][3],在讲计算时引用[2][3]。 现在需要确认引用是否正确。引用[1]提到左乘和右乘的顺序,引用[3]提到分解为平移和旋转的复合,引用[2]提到numpy中的矩阵乘法和应用实例。这些都需要正确对应到回答中的相应部分。 最后,生成相关问题需要考虑用户可能进一步想了解的内容,比如逆矩阵计算、左乘右乘的区别、实际应用案例、与其他表示方法的比较(如四元数、欧拉角)等。</think>### 机器人学中的齐次变换矩阵 #### 作用 齐次变换矩阵机器人学中描述坐标系间位置和姿态(合称“位姿”)的核心工具,主要作用包括: 1. **统一旋转与平移** 将三维空间中的旋转和平移操作整合为一个$4 \times 4$矩阵,简化多步变换的运算。例如,坐标系$B$相对于坐标系$A$的位姿可用齐次矩阵$T_{AB}$表示,其中包含旋转矩阵$R_{AB}$和平移向量$P_{AB}$[^3]。 2. **复合变换的链式运算** 通过矩阵相乘实现多步坐标变换的叠加。例如,从基坐标系到工具坐标系的变换可分解为多个中间变换矩阵的乘积:$T_{\text{基→工具}} = T_{\text{基→关节1}} \cdot T_{\text{关节1→关节2}} \cdots$[^1]。 3. **简化逆变换计算** 齐次变换矩阵的逆矩阵可直接通过分块矩阵运算求得,避免复杂的几何推导。 #### 计算方法 1. **基础结构** 齐次变换矩阵的标准形式为: $$ T = \begin{bmatrix} R & P \\ 0 & 1 \end{bmatrix} $$ 其中$R$为$3 \times 3$旋转矩阵,$P$为$3 \times 1$平移向量,$0$为$1 \times 3$零向量。 2. **旋转与平移的组合** - **先旋转后平移**:矩阵形式为$T = \text{Trans}(P) \cdot \text{Rot}(R)$,对应右乘规则(新变换矩阵在右侧添加)。 - **先平移后旋转**:矩阵形式为$T = \text{Rot}(R) \cdot \text{Trans}(P)$,对应左乘规则(新变换矩阵在左侧添加)[^1]。 3. **实例:绕x轴旋转θ并平移** 绕x轴旋转θ的齐次矩阵为: $$ \text{Rot}(x, \theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} $$ 平移向量$(a,b,c)$对应的齐次矩阵为: $$ \text{Trans}(a,b,c) = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} $$ 两者组合后的变换矩阵为$\text{Trans}(a,b,c) \cdot \text{Rot}(x, \theta)$(先旋转后平移)[^3]。 4. **实际编程实现** 在Python中可使用NumPy进行矩阵运算: ```python import numpy as np # 创建旋转矩阵R和平移向量P R = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) P = np.array([a, b, c]) # 构建齐次矩阵 T = np.eye(4) T[:3, :3] = R T[:3, 3] = P # 复合变换:T_total = T1 * T2(左乘) T_total = np.dot(T1, T2) ``` 引用[^2]中以“眼在手外”标定为例,演示了多坐标系变换的矩阵连乘方法。 #### 应用场景 - **机械臂运动学建模**:通过D-H参数法建立各关节的齐次变换矩阵,推导末端执行器位姿。 - **传感器标定**:如相机与机械臂的“手眼标定”中,求解相机坐标系与工具坐标系的变换关系。 - **路径规划**:将目标点从世界坐标系转换到关节坐标系,计算关节运动参数。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值