《博主简介》
小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
👍感谢小伙伴们点赞、关注!
《------往期经典推荐------》
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
这篇论文主要介绍了一种名为BiRefNet的双边参考框架,用于高分辨率二值图像分割(DIS)
。BiRefNet包含定位模块和重建模块,利用源图像和梯度图作为内外参考进行图像重建。论文还引入了辅助梯度监督以增强对精细细节区域的关注,并提出了适用于DIS的实用训练策略。实验结果显示,BiRefNet在多个数据集上均表现出卓越性能,优于当前最先进的方法。
使用BiRefNet可轻松实现关键目标的一键分割,剔除背景。
源码地址:https://github.com/ZhengPeng7/BiRefNet
效果展示
研究背景
- 随着高分辨率图像获取技术的发展,图像分割技术已从传统的粗略定位演变为高精度的对象分割。
- 高分辨率二值图像分割(DIS)专注于高分辨率图像中目标对象的复杂细长结构,这一任务具有挑战性。
- 现有的方法在捕捉非常精细的特征方面仍然不足。
研究方法
- 论文提出了一种双边参考网络(BiRefNet),包含定位模块(LM)和重建模块(RM)。
- LM使用全局语义信息辅助对象定位。
- RM利用双边参考(BiRef)进行重建,其中源图像和梯度图分别作为内外参考。
- 引入了辅助梯度监督来增强对精细细节区域的关注。
- 提出了适用于DIS的实用训练策略,以提高映射质量和训练过程。
实验结果
- 在四个任务上进行了广泛的实验,结果表明BiRefNet在所有基准测试中均表现出卓越性能,优于特定任务的最新方法。
- BiRefNet在DIS5K任务、高分辨率显著目标检测(HRSOD)和隐蔽目标检测(COD)任务上分别实现了6.8%、2.0%和5.6%的平均S指标提升。
- 论文展示了BiRefNet在各种实际应用中的潜力,如建筑裂缝检测和高质量对象提取。
总体来说,这篇论文提出了一种有效的高分辨率二值图像分割方法,通过双边参考机制显著提高了模型对细节的捕捉能力,并在多个数据集上取得了领先性能。
关于算法的相关论文、源码、模型都已经整理好了,需要的小伙伴可以自行获取。
好了,这篇文章就介绍到这里,如果对你有帮助,感谢点赞关注!
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!