一、本文介绍
本文记录的是基于GAM注意力模块的YOLOv9目标检测改进方法研究。GAM注意力模块
通过3D排列和重新设计的子模块,能够在通道和空间方面保留信息,避免了先前方法中由于信息减少和维度分离而导致的全局空间-通道交互丢失的问题。本文利用GAM
改进YOLOv9
,以增强模型的跨维度交互能力。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
本文记录的是基于GAM注意力模块的YOLOv9目标检测改进方法研究。GAM注意力模块
通过3D排列和重新设计的子模块,能够在通道和空间方面保留信息,避免了先前方法中由于信息减少和维度分离而导致的全局空间-通道交互丢失的问题。本文利用GAM
改进YOLOv9
,以增强模型的跨维度交互能力。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进