一、本文介绍
本文记录的是基于CFC和SFC模块的YOLOv10模型改进方法研究。
CFC(Context Feature Calibration)上下文特征校准
和 SFC(Spatial Feature Calibration)空间特征校准
模块提出了创新的特征校准策略,CFC模块
通过定制上下文聚合解决上下文不匹配问题,SFC模块
通过分组校准改善空间特征不对齐问题,能以低额外成本高效提升提取特征的质量。将CFC
和SFC模块
应用到YOLOv10
网络中,通过其独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化。
专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进