一、本文介绍 本文记录的是利用CGA Fusion 模块改进 YOLOv12 的多模态融合部分。 CGAFusion(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用CGA Fusion 模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。 专栏目录:《多模态模型改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用 专栏地址:YOLO系列模型的多模态融合改进——极易上手、非常好发文的多模态改进教程! 文章目录 一、本文介绍 二、CGA Fusion模块介绍 2.1 CGA模块(Content-Guided Attention) 2.1.1 设计出发点 2.1.2 原理与结构 2.1.3 优势 2.2 CGA Fusion模块(CGA-Based Mixup Fusion Scheme) 2.2.1 设计出发点 2.2.2 原理与结构 2.2.3 优势 三、CGA Fusion的实现代码 四、融合步骤 5.1 修改一<