前言
知识蒸馏(Knowledge Distillation)是由 Hinton 等人在 2015 年提出来的,主要是用一个复杂的教师模型去指导一个简单的学生模型训练,这样能让学生模型在保持高精度的同时,还能减少计算量。本文便是讲解如何针对YOLOv11
的原始模型以及改进后的模型进行知识蒸馏,轻松实现无损涨点。
模型 | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|
YOLOv11n | 85.8 | 82.6 | 89.4 | 54.2 |
YOLOv11n蒸馏 | 88.0 | 84.5 | 91.3 | 56.3 |
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进