使用AlexNet进行相机源识别

一、概述

AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在此之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。

二、网络具体描述

AlexNet首次在CNN中成功应用了ReLU、Dropout和LRN等,同时也使用了GPU进行运算加速,把CNN的基本原理应用到了很深很宽的网络中。
AlexNet主要使用到的新技术点如下:

  1. 成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。
  2. 训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。
  3. 在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
  4. 提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。
  5. 使用CUDA加速深度卷积网络的训练,利用GPU强大的并行计算能力,处理神经网络训练时大量的矩阵运算。AlexNet使用了两块GTX580GPU进行训练,单个GTX580只有3GB显存,这限制了可训练的网络的最大规模。
  6. 数据增强,随机地从256256的原始图像中截取224224大小的区域(以及水平翻转的镜像),相当于增加了2*(256-224)^2=2048倍的数据量。如果没有数据增强,仅靠原始的数据量,参数众多的CNN会陷入过拟合中,使用了数据增强后可以大大减轻过拟合,提升泛化能力。

三、相机源识别概述

相机源识别,这一技术如同一位精明的侦探,它能够追溯图像的诞生之源,揭示出拍摄这些视觉故事的幕后英雄——相机。这项技术通过分析照片中的细微特征,如噪点模式、色彩渲染、镜头畸变等,来识别出拍摄时所使用的相机型号或品牌。它不仅仅是对硬件的辨识,更是一种对摄影艺术背后工艺的解读。 在数字时代,相机源识别技术尤为重要,它可以帮助版权保护者追踪未经授权的使用,确保摄影师的劳动成果得到应有的尊重。同时,它也是摄影爱好者和专业人士的得力助手,通过识别相机源,他们可以更好地理解不同相机的表现特性,从而在创作中做出更合适的选择。 这项技术的发展,也推动了摄影器材制造商不断创新,以独特的成像特征来区分自己的产品。相机源识别,就像是一把钥匙,打开了摄影技术深层次的大门,让我们得以一窥那些静态画面背后的动态故事。

四、代码部分

代码采用的数据集为kaggle平台2018年竞赛的数据集,已上传至资源,请各位自行跳转下载。

  1. 模型代码
import torch.nn as nn
import torch

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                 
            nn.Conv2d(48, 128, kernel_size=5, padding=2),          
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                 
            nn.Conv2d(128, 192, kernel_size=3, padding=1),        
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),         
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),        
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                 
        )
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ttbigcute

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值