点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
小白导读论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要
从二维线图图像中自动提取原始数据是一个非常重要的问题,有许多实际应用。已经提出了几种算法来解决这个问题。然而,这些算法涉及大量的人工干预。为了减少这种干扰,作者提出了APEX-Net,一个基于深度学习的框架,使用新的损失函数来解决图的提取问题。作者引入了一个新的大型数据集APEX-1M,它包含了绘图图像和原始数据。作者在APEX-1M测试集中演示了APEX-Net的性能,并表明它获得了令人印象深刻的精度。作者还展示了作者的网络对看不见的plot图像的可视化结果,表明该网络在很大程度上提取了plot的形状。最后,作者开发了一个基于图形用户界面的绘图软件,它可以使整个社区受益。数据集和代码将向公众开放。
论文创新点
从目标检测算法中汲取灵感,并认识到它们之间的差异,作者开发了一个名为APEX-Net的深度学习框架,解决了自动绘图的问题。据作者所知,这是深度学习框架中解决这一问题的第一个工作。作者的主要贡献如下:
-
介
APEX-Net是一个深度学习框架,旨在减少人工干预,从绘图图像中自动提取原始数据。利用新的损失函数,该框架在大规模数据集APEX-1M上展示出色性能,适用于计算机视觉和神经网络领域的绘图图像处理。此外,还开发了一款基于GUI的绘图软件,以促进社区使用。
最低0.47元/天 解锁文章
1038

被折叠的 条评论
为什么被折叠?



