点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
小白导读
论文是学术研究的精华和未来发展的明灯。小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容。个人能力有限,理解难免出现偏差,建议对文章内容感兴趣的读者,一定要下载原文,了解具体内容。

摘要
钢表面缺陷的目视检测是钢板制造过程中必不可少的环节。近年来研究了几种基于机器学习的自动视觉检测(AVI)方法。然而,由于训练时间和AVI方法的不准确性,大多数钢铁制造行业仍然使用人工目视检查。自动钢缺陷检测方法在成本更低和更快的质量控制和反馈方面是有用的。但是,为分割和分类准备带注释的训练数据可能是一个昂贵的过程。在这项工作中,我们建议使用基于迁移学习的U-Net (tu - net)框架来检测钢表面缺陷。我们以U-Net架构为基础,探讨了两种编码器:ResNet和DenseNet。我们使用随机初始化和使用ImageNet数据集训练的预训练网络的性能进行了比较。实验使用Severstal数据进行。结果表明,迁移学习的缺陷分类性能比随机初始化的缺陷分类性能好5%(绝对)。我们发现迁移学习在缺陷分割中的表现比随机初始化好26%(相对)。迁移学习的增益随着训练数据的减少而增加,且迁移学习的收敛速
研究提出了一种基于迁移学习的U-Net(TLU-Net)框架,用于钢表面缺陷的自动检测。通过对比ResNet和DenseNet预训练模型与随机初始化的性能,结果显示迁移学习在缺陷分类和分割上表现出显著优势,特别是在数据量有限的情况下。此方法在Severstal数据集上的实验表明,预训练网络的性能优于随机初始化,且收敛速度更快。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



