深度学习图像语义分割常见评价指标详解

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

图像语义分割

深度学习已经应用在计算机视觉领域多个方面,在最常见的图像分类、对象检测、图像语义分割、实例分割视觉任务都取得了良好的效果,如下图所示:

529d6e1580456f5310cc1bb4a55af3b0.jpeg

深度学习在图像语义分割上已经取得了重大进展与明显的效果,产生了很多专注于图像语义分割的模型与基准数据集,这些基准数据集提供了一套统一的批判模型的标准,多数时候我们评价一个模型的性能会从执行时间、内存使用率、算法精度等方面进行考虑。有时候评价指标也会依赖于模型的应用场景而有所不同,精准度对一些严苛的使用场景是优先考虑的,速度是对一些实时应用场景优先考虑的。对语义分割模型来说,通常用下面的一些方法来评价算法的效果。

No.1

执行时间

运行时间或者速度是一个很关键的指标,特别是在模型部署以后的推理阶段,在有些应用场景下,我们知道训练模型所需要的时间也是有意义的,但是通常不是很重要。主要原因在于训练/学习不是一个实时需求,除非训练时间极其漫长或者训练时候运行速度极其慢。另外一个问题是,执行时间容易受到各种硬件资源不同的影响,所以一般情况下很难去统一度量,不考虑硬件资源,片面的通过执行时间来衡量模型好坏有失公平。

No.2

内存占用

对所有的语义分割模型来说,内存是另外一个重要因素,尽管多数场景中内存是可以随时扩充的,但是在一些嵌入式设备上,内存也是很珍贵的,即时高端GPU卡,内存也不是无限制可以消费的,所以网络的对内存的消耗也是一个评估考量的指标。

No.3

精度(Accuracy)

精度是评价图像分割网络最主要也是最流行的技术指标,这些精度估算方法各种不同,但是主要可以分为两类,一类是基于像素精度,另外一类是基于IOU。当前最流行的语义分割方法评估都是基于像素标记为基础完成的。

假设总计有k+1分类(标记为L0到Lk,其中包含一个背景类别),Pij表示类别为i的像素被预测为类别为j的数目,这样来说Pii就表示TP(true positives),Pij与Pji分别表示为FP(false positives)与FN(false negatives)

像素精度

01

PA – (Pixel Accuracy) 

最简单的度量计算,总的像素跟预测正确像素的比率:

ad40c908681ee1451c41fca15a5368f7.png

平均像素精度

02

MPA –Mean Pixel Accuracy

基于每个类别正确的像素总数与每个类别总数比率求和得到的均值:

1839cd016cbaf33d2edd3f41575be25c.png

平均并交比

03

MIoU-Mean Intersection over Union

这是语义分割网络的一个标准评价指标,它通过计算交并比来度量,这里交并比代指ground truth与预测分割结果之间。是重新计算TP跟 (TP + FN+FP)之和之间的比率。IoU是基于每个类别计算,然后再求均值。公式如下:

c93868bb0a13bced4c41d2bb8566e096.png

频率权重并交比

04

FWIoU(Frequency Weighted Intersection over Union)

他是MIoU的改进版本,它会根据每个分类出现频率,对每个分类给予不同权重。它的计算方法如下:

5bf5a2dd15878650643344dc0f5f80fb.png

上述四种精度计算方法,MIoU是各种基准数据集最常用的标准之一,绝大数的图像语义分割论文中模型评估比较都以此作为主要技术指标。常见如下:

9100e4ebde04b081fe5241ea8dbfba06.png

bc7e0c907648d8eef94e287b846f29d9.png

 
 

好消息!

小白学视觉知识星球

开始面向外开放啦👇👇👇

 
 

768c693d0b61195a9383fea2aab484a8.jpeg

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
阈值分割是一种常见图像处理技术,它通过设定一个阈值将图像分成前景和背景两部分。评价阈值分割法的效果通常会考虑以下几个关键指标: 1. **准确率** (Accuracy):表示分类正确的像素比例,即(TP+TN)/(TP+FP+FN+TN),其中TP是真正例(True Positive),FP是假正例(False Positive),FN是假负例(False Negative)。 2. **召回率** (Recall) 或 **灵敏度** (Sensitivity):衡量的是找到真正例的能力,即 TP/(TP+FN)。召回率意味着较少漏检重要目标。 3. **特异度** (Specificity):衡量的是避免误报的能力,即 TN/(TN+FP)。特异度越,误分类的情况越少。 4. **F1分数** (F1 Score):综合了精确率(Precision, TP/(TP+FP)) 和召回率,它是这两个值的加权平均,用于平衡精度和召回率的重要性。 5. **ROC曲线** (Receiver Operating Characteristic Curve) 和 **AUC值** (Area Under the Curve):ROC曲线展示的是随着阈值变化,真正例率(TPR)与假正例率(FPR)的关系。AUC值是ROC曲线下面积,范围从0到1,AUC越大表示模型性能越好。 6. **Jaccard相似度** 或 **交并比** (Intersection over Union, IoU):对于二分类任务,IoU用来评估两个区域的相似程度,计公式为 TP / (TP + FP + FN)。 评价阈值分割时,需要根据实际应用场景选择合适的指标,例如,在追求识别精度的场合,可能更重视特异度;而在追求覆盖更多的目标时,则关注召回率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值