BT-Unet:医学图像分割的自监督学习框架

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

作者:DeepHub IMBA@公众号(已授权CV技术指南转载)

来源:https://mp.weixin.qq.com/s/_6w6LHtwmwRlabn_n-RJaQ

BT-Unet

ebaa95286489b6d9f921630d5b8b7046.png

BT-Unet架构图:a、预训练U-Net编码器网络,b、用预训练的编码器权值初始化的微调U-Net模型

BT-Unet框架分为两个阶段:1)预训练阶段和2)微调阶段。

预训练

预训练的目的是使用无注释的数据样本,学习复杂的特征表示。U-Net模型的编码器使用Barlow Twins (BT)策略进行预先训练,然后进行微调以执行实际的分割:

b27b62d30043b71a4aefee018959f1c9.png

BT-Unet框架可应用于各种先进的U-Net模型:经典U-Net、注意力U-Net (A-Unet)、inception U-Net (I-Unet)和residual cross-spatial attention guided inception  U-Net (RCA-IUnet)。

微调

U-Net 模型中编码器网络的权重使用预训练权重(来自第一阶段)进行初始化,而网络的其余部分使用默认权重进行初始化。

使用有限的注释样本对 U-Net 模型进行微调,用于生物医学图像分割。

U-Net 模型使用分段损失函数进行微调,L 定义为二元交叉熵损失、LBC 和dice coefficient损失的平均值,LDC:

d44a5514063aa162eebb4f63ec3d5277.png

其中,y为像素的真值标签,p(y)为像素的预测标签,N为像素的总数量。

结果表现

论文使用下面的数据集进行评测对比:

46f5c074bf8a257e983683188b652866.png

基于相同样本数量的小训练集的性能分析

cc30f35376ffc8246dbb533a026c18ca.png

2bf447f4132488a033ad19c78055d4c2.png

  • KDSB18:BTU-Net 模型的性能优于没有使用 BT方法 的模型。

  • BUSIS:U-Net 和 A-Unet 模型无法学习和提取有关肿瘤区域的特征图(精度、DC 和 mIoU 为 0),但是通过预训练,这些模型取得了显着的改进。在 I-Unet 和 RCAIUnet 模型的情况下,通过预训练可以得到相当大的改进。

  • ISIC18:I-Unet 和 RCAIUnet 模型是影响最大的网络,精度分别提高了 5.1% 和 2.2%。然而,在使用 BT 预训练时,经典的U-Net 和 A-Unet 的性能略有下降。

  • BraTS18:I-Unet 和 RCA-IUnet 模型在使用 BT-Unet 框架时在分割性能上取得了显着提升,而普通 U-Net 和 A-Unet 模型则没有观察到相同的行为。

在不同规模小型训练集的性能研究

d527b456907a2ebb1a9e51710bfb4e65.png

对于所有训练数据比例小于50%的数据集,在模型之间观察到类似的性能变化。

定性结果

2576d13f255dea68aa60f6d93dc584cb.png

带有BT的RCA-IUNet具有很好的分割效果。

论文地址:

[2022 JML] [BT-Unet]  BT-Unet: A self-supervised learning framework for biomedical image segmentation using barlow twins with U-net models

https://link.springer.com/article/10.1007/s10994-022-06219-3

作者:Sik-Ho Tsang

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值