少样本/零样本学习方向开源数据集汇总

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达eed6c461a78502ee1b212fd2d9af8f0d.jpeg

编辑丨极市平台

极市导读

 

本文汇总了少样本/零样本相关的数据集资源,均附有下载链接,更多数据集资源汇总:https://www.cvmart.net/dataSets。 

往期回顾:

医学影像相关开源数据集资源汇总

卡车货车、野外火灾、抽烟识别等开源数据集资源汇总

面部表情识别相关开源数据集资源汇总

打架识别相关开源数据集资源汇总(附下载链接)

口罩识别检测开源数据集汇总

目标跟踪方向开源数据集资源汇总

16个图像分类方向开源数据集资源汇总(附下载链接)

异常检测开源数据集汇总

语义分割方向开源数据集资源汇总

卫星图像公开数据集资源汇总

FSOD少样本目标检测数据集

数据集下载链接:http://suo.nz/3d6H0E

少样本目标检测数据集(FSOD)是一个高度多样化的数据集,专门为少样本目标检测而设计,本质上是为了评估模型在新类别上的通用性。

176ce1531bd527e037db69428a2e18af.png

UT Zappos50K鞋类数据集

数据集下载链接:http://suo.nz/35EG4Z

UT Zappos50K ( UT-Zap50K ) 是一个大型鞋类数据集,包含从Zappos.com收集的50,025 个目录图像。这些图像分为 4 个主要类别——鞋子、凉鞋、拖鞋和靴子——其次是功能类型和个人品牌。鞋子以白色背景为中心,并以相同方向进行拍照,以便于分析。

85f2ef80cb3b0e6b3e94f9de2230367d.png

Animals with Attributes数据集

数据集下载链接:http://suo.nz/2Y8tgq

该数据集提供了一个基准迁移学习算法的平台,特别是属性基分类和 零样本学习[1]。它可以作为原始Animals with Attributes (AwA)数据集 [2,3]的直接替代品,因为它具有相同的类结构和几乎相同的特征。它由 50 个动物类别的 37322 张图像组成,每张图像都有预先提取的特征表示。这些类与 Osherson 的经典类/属性矩阵 [3,4] 对齐,从而为每个类提供 85 个数字属性值。使用共享属性,可以在不同类之间传输信息。

12e40a715e823ab28e553009c3131ea6.png

原始矿物物种识别基准

数据集下载链接:http://suo.nz/2RidE3

该数据集包含 5,000 多种不同的矿物物种,并包含零样本和少样本学习的子集。除了样本本身之外,数据集中的一些条目还附有补充的自然语言描述、大小测量和分割掩码。

e321ed2b0a63d86fbbec26beaf236cc0.png

RareAct异常动作视频数据集

数据集下载链接:http://suo.nz/2JM0zm

RareAct是一个异常动作的视频数据集,包括“混合手机”、“切键盘”和“微波炉鞋”等动作。它的目的是评估动作识别模型的零样本和少样本组合性,以识别常见动作动词和宾语名词的不太可能的组合。它包含 122 个不同的动作,这些动作是通过组合在 HowTo100M 的大规模文本语料库中很少同时出现但经常单独出现的动词和名词来获得的。

cc9e96cd28aa77af8df60b0f9afe2232.png

Generix 对象零样本学习 ( GOZ ) 数据集

数据集下载链接:http://suo.nz/2J1o3T

Generix 对象零样本学习 ( GOZ ) 数据集是零样本学习的基准数据集。

75b680439de7e3908a67d694e9a379cc.png
下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值