【荐读 IEEE TPAMI】一种灵活的EM类噪声数据聚类算法

33 篇文章 37 订阅

题目:A Flexible EM-Like Clustering Algorithm for Noisy Data

一种灵活的EM类噪声数据聚类算法

作者:Violeta Roizman; Matthieu Jonckheere; Frédéric Pascal


摘要

尽管非常流行,但众所周知,高斯混合模型(Gaussian mixture model)的期望最大化(Expectation-Maximization,EM)算法在处理非高斯分布或存在异常值或噪声时表现不佳。在本文中,我们提出了一种灵活的类EM聚类算法(Flexible EM-like Clustering Algorithm,FEMCA):设计了一种新的聚类算法,遵循EM过程。它基于对聚类中心和协方差的估计。此外,使用半参数范式,该方法为每个数据点估计一个未知的尺度参数。这使得算法能够在不过分损失效率的情况下适应更重尾分布、噪声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值