题目:A Flexible EM-Like Clustering Algorithm for Noisy Data
一种灵活的EM类噪声数据聚类算法
作者:Violeta Roizman; Matthieu Jonckheere; Frédéric Pascal
摘要
尽管非常流行,但众所周知,高斯混合模型(Gaussian mixture model)的期望最大化(Expectation-Maximization,EM)算法在处理非高斯分布或存在异常值或噪声时表现不佳。在本文中,我们提出了一种灵活的类EM聚类算法(Flexible EM-like Clustering Algorithm,FEMCA):设计了一种新的聚类算法,遵循EM过程。它基于对聚类中心和协方差的估计。此外,使用半参数范式,该方法为每个数据点估计一个未知的尺度参数。这使得算法能够在不过分损失效率的情况下适应更重尾分布、噪声

订阅专栏 解锁全文
283

被折叠的 条评论
为什么被折叠?



