论文信息
题目:Integrating Neural-Symbolic Reasoning With Variational Causal Inference Network for Explanatory Visual Question Answering
将神经符号推理与变分因果推理网络相结合,实现解释性视觉问答
作者:Dizhan Xue; Shengsheng Qian; Changsheng Xu
论文创新点
- 1 神经符号推理与变分因果推断的整合:文章提出了一种名为程序引导的变分因果推断网络(Pro-VCIN)的方法,该方法整合了神经符号推理的过程可解释性和解释性视觉问答(EVQA)的结果可解释性。这种方法通过将推理过程转换为符号框架,并利用变分因果推断来构建预测答案和解释之间的因果关系,提高了模型的可解释性和可信度。
- 2 多模态程序Transformer的设计