医图论文MICCAI 2023 | 基于最小化不变风险学习用于不平衡医学图像数据集的鲁棒分类器(含噪声标签)

论文信息

题目: Learning Robust Classifier for Imbalanced Medical Image Dataset with Noisy Labels by Minimizing Invariant Risk
基于最小化不变风险学习用于不平衡医学图像数据集的鲁棒分类器(含噪声标签)
作者:Jinpeng Li, Hanqun Cao, Jiaze Wang, Furui Liu, Qi Dou, Guangyong Chen, Pheng-Ann Heng

论文创新点

  1. 提出映射校正分解:论文提出映射校正分解方法,将非线性映射p(y = c|x)分解为两个空间映射的乘积pG(y = c|z) · pH(z|x),并进一步将其负面影响分解为不平衡、噪声和硬度影响,创新性地结合独立噪声检测和去除技术,有效识别和去除噪声影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值