论文信息
题目:A Flexible Framework for Simulating and Evaluating Biases in Deep Learning-Based Medical Image Analysis
基于深度学习的医学图像分析中模拟和评估偏差的灵活框架
作者:Emma A. M. Stanley, Matthias Wilms, Nils D. Forkert
源码:https://github.com/estanley16/SimBA
论文创新点
- 提出灵活框架:论文提出了一个灵活且模块化的框架,用于模拟医学成像数据中的偏差。通过从生成模型中有控制地采样代表疾病状态和偏差特征的脑区特定形态变化,能够生成任意大小和组成的合成数据集,从而可以研究各种数据集偏差场景及其对深度学习管道的影响。
- 设计模拟方法: