医图论文MICCAI 2023 | 基于深度学习的医学图像分析中模拟和评估偏差的灵活框架

论文信息

题目:A Flexible Framework for Simulating and Evaluating Biases in Deep Learning-Based Medical Image Analysis
基于深度学习的医学图像分析中模拟和评估偏差的灵活框架
作者:Emma A. M. Stanley, Matthias Wilms, Nils D. Forkert
源码:https://github.com/estanley16/SimBA

论文创新点

  1. 提出灵活框架:论文提出了一个灵活且模块化的框架,用于模拟医学成像数据中的偏差。通过从生成模型中有控制地采样代表疾病状态和偏差特征的脑区特定形态变化,能够生成任意大小和组成的合成数据集,从而可以研究各种数据集偏差场景及其对深度学习管道的影响。
  2. 设计模拟方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值