使用FairMOT训练好的模型自动下载预先训练模型

问题:今天想要使用FairMOT训练好的模型进行人的多目标跟踪。已经下载了fairmot_dla34.pth但是运行demo.py还是会自动下载dla34-ba72cf86.pth模型。

环境:

ubuntu,gtx 1050ti , python3.6 ,CUDA10.0

具体问题:

在输入完执行命令之后,显示:
Createing model……
Downloading: “http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth”
如果下的很快的话可能这里我也就忍了,但是超级超级慢。如图所示:在这里插入图片描述
这里已经选择了模型,为什么还会下载模型呢???
然后在该路径下找到了这个链接的地址在这里插入图片描述

在这里插入图片描述
在这里执行了下载模型的代码。
在FairMOT的Github项目中看到有人文类似问题,但是没有找到好的解决办法。
然后通过该算法论文可知该算法的目标检测使用的是CenterNet网络,该网络中使用到DLA作为主干网络。CenterNet和FairMOT都是同一个大佬提出得,因此我到CenterNet项目的Issue中找到了官方回复:解答
这个是作者亲自回复的!!!!!
在这里插入图片描述
意思是直接注释掉这行代码即可。在这里插入图片描述
成功解决!!!

### 使用MOT数据集训练FairMOT模型 #### 准备环境和依赖项 为了成功训练 FairMOT 模型,需安装必要的库并准备开发环境。通常情况下,推荐使用 Anaconda 创建虚拟环境来管理 Python 包。 ```bash git clone https://github.com/ifzhang/FairMOT.git cd FairMOT/src/lib/tracking_utils/ pip install -r requirements.txt ``` #### 数据预处理 对于 MOT2017 和 MOT2020 数据集[^1],需要按照特定格式整理图像文件夹结构,并生成相应的标注文件。这一步骤确保输入符合 FairMOT 的预期标准。 ```python import os from glob import glob def prepare_data(data_dir, output_file): with open(output_file, 'w') as f: frames = sorted(glob(os.path.join(data_dir, '*/*.jpg'))) for frame_path in frames: seq_name = os.path.basename(os.path.dirname(frame_path)) img_id = int(os.path.splitext(os.path.basename(frame_path))[0]) line = f"{seq_name} {img_id}\n" f.write(line) prepare_data('path/to/MOT20/train', 'train_fairmot_format.txt') ``` #### 修改配置文件 编辑 `lib/opts.py` 中的相关参数设置以适应本地硬件条件以及所使用的具体版本的数据集。特别是调整路径指向正确的目录位置。 ```python class opts(): def __init__(self): self.dataset_root = '/path/to/MOT20' ... ``` #### 训练过程 启动训练之前确认 GPU 可用性和 CUDA 配置无误。通过命令行调用脚本执行训练流程,在此过程中会加载预定义好的网络架构——DLA-34 并在其上附加额外的卷积层用于特征提取[^2]。 ```bash python train.py mot --exp_id fairmot_dla34 \ --batch_size 16 \ --lr 1e-4 \ --num_epochs 30 \ --arch dla_34 \ --data_cfg '../src/lib/cfg.json' \ --gpus 0,1 ``` 上述指令指定了实验 ID (`fairmot_dla34`)、批量大小(`16`)、学习率(`1e-4`)等超参选项;同时也设定了要采用 DLA-34 架构作为基础骨干网,并指定多张显卡共同参与计算加速。 #### 测试评估 完成一轮或多轮迭代之后可以利用测试模式验证模型性能: ```bash python test.py mot --resume ../../models/fairmot_dla34.pth \ --dataset_root /path/to/MOT20/test \ --save_video True ``` 该命令读取保存下来的权重文件继续推理阶段的操作,同时开启视频录制功能记录下检测效果以便后续分析比较。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值