图论复习2022春

这里写自定义目录标题

1 基本概念

1.1

(1) V是一个有限的非空集合, 称为顶点集合, 其元素称为顶点或点(vertex). 用|V|表示顶点数;
(2) E是由V中的点组成的无序对构成的”集合”, 称为边集, 其元素称为边(edge), 且同一点对在E中可以重复出现多次, 用|E|表示边数.
有限图(finite graph):顶点集和边集都有限的图
平凡图(trivial graph):只有1个顶点的图
零图(null graph):顶点集为空(边集随之为空)的图
空图(empty graph):边集为空(顶点集非空)的图
n阶图(order):顶点数为n的图
(n,m)图:顶点数为n, 边数为m的图
边的重数(multiplicity):连接两个相同顶点的边的条数
重边(multiple/parallel edge):重数>1的边
自环(loop):端点重合为一点的边
多重图(multigraph):包含重边(但不包含自环)的图;
简单图(simple graph):无自环无重边的图

顶点u与v相邻或邻接(adjacent):顶点u与v间有边相连接, 记为 u↔v;
其中u与v称为该边的两个端点;
简单图中, 包含一个点v所有邻点的集合称作v的邻域(neighborhood), 記作N(v).
边e1与边e2邻接: e1与e2有公共端点.
顶点u与边e相关联(incident): 顶点u是边e的端点

证明G和H不同构

因为u1的两个邻接点与v1的两个邻接点状况不同
所以, 两图不同构.

证明G和H同构

作映射f:vi ↔ ui (i=1, 2….10)
容易证明, vivj∈E(G), 当且仅当 f(vi)f(vj)=uiuj∈E(H) (1≤i≤10, 1≤j≤10)
由定义知, 图G与H是同构的.

求4个顶点的非同构的所有简单图

4个顶点的简单图最少边数为0, 最多边数为6, 所以可按边数进行枚举.

4推论1
在任何图中, 奇度点的个数为偶数

设V1, V2分别是G中奇点集和偶点集
由握手定理有
∑ v ∈ V 1 d ( v ) + ∑ v ∈ V 2 d ( v ) = ∑ v ∈ V d ( v ) \sum\limits_{v \in {V_1}} {d\left( v \right)} + \sum\limits_{v \in {V_2}} {d\left( v \right)} = \sum\limits_{v \in V} {d\left( v \right)} vV1d(v)+vV2d(v)=vVd(v)是偶数
由于 ∑ v ∈ V 2 d ( v ) \sum\limits_{v \in {V_2}} {d\left( v \right)} vV2d(v)是偶数
所以 ∑ v ∈ V 1 d ( v ) \sum\limits_{v \in {V_1}} {d\left( v \right)} vV1d(v)是偶数
所以 ∣ V 1 ∣ \left| {{V_1}} \right| V1是偶数

由握手定理,奇度点的度之和+偶度点的度之和=2m
因为偶度点的度之和为偶数
所以奇度点的度之和必须为偶数
所以奇度点个数一定为偶数

4推论2
正则图的阶数和度数不同时为奇数

设G是k-正则图, 若度数k为奇数, 则由推论1知正则图G的点数必为偶数

30习题8
Δ与δ是简单图G的最大度与最小度
求证: δ ≤ 2 m n ≤ Δ \delta \le {{2m} \over n} \le \Delta δn2mΔ

n δ ≤ ∑ v ∈ V ( G ) d ( v ) = 2 m ≤ n Δ n\delta \le \sum\limits_{v \in V(G)} {d(v) = 2m} \le n\Delta nδvV(G)d(v)=2mnΔ
δ ≤ 2 m n ≤ Δ \delta \le {{2m} \over n} \le \Delta δn2mΔ

完全图 偶图 补图

完全图(complete graph):每两个不同的顶点之间都有一条边相连的简单图
具有二分类(X, Y)的偶图偶图(bipartite graph):一个图, 它的点集可以划分为两个非空子集X和Y, 使得每条边的一个端点在X中, 另一个端点在Y中.
完全偶图(complete bipartite graph):具有二分类(X, Y)的简单偶图, 其中X的每个顶点与Y的每个顶点相连, 若|X|=m, |Y|=n, 则这样的完全偶图记为 Km,n. 特别地, K1,3也被称作爪(claw), K1,s(s≥1)也被称作星(star).

则称图H =(V, E1\E)为G的补图(complement graph), 记为

G的顶点v的 d(v):G中与v关联的边的数目,每个环计算两次.
δ(G):图G的最小度
Δ(G):图G的最大度
奇度点:奇数度的点
偶度点:偶数度的点

设G = (V, E), 如果对所有v∈V, 有d(v) = k, 称图G为k-正则图
k正则图G的补图的边数+k正则图G的边数=n个点的完全图的边数=n(n-1)/2
n个点的完全图是(n-1)正则图
k正则图G的边数=nk/2
k正则图G的补图的边数= n(n-1)/2- nk/2= n(n-1-k)/2

握手定理
图G=(V, E)中所有顶点的度的和=边数m的2倍, 即:
总度数=2*边数
推论1 在任何图中, 奇度点的个数为偶数
推论2 正则图的阶数和度数不同时为奇数

29习题6
简单图G,G的边数m=n(n-1)/2↔G是完全图

G的边数m=n(n-1)/2→G是完全图:反证法,握手
G的边数m=n(n-1)/2←G是完全图:握手

度序列

G的度序列:一个图G的各个点的度d1, d2, …, dn构成的非负整数组 (d1, d2, …, dn)
图的度序列与顶点的顺序无关.
同构的所有图具有相同的度序列(反之不成立).

在n阶连通图中至少有n−1条边

4
非负整数组(d1, d2, …., dn)是图的度序列的充分必要条件是
度和 ∑ i = 1 n d i \sum\limits_{i = 1}^n {{d_i}} i=1ndi为偶数

必要性由握手定理立即得到.
如果 ∑ i = 1 n d i \sum\limits_{i = 1}^n {{d_i}} i=1ndi为偶数, 则数组中为奇数的数字个数必为偶数
按照如下方式作图G:若di为偶数, 则在与之对应的点作di/2个环; 对于剩下的偶数个奇数,
两两配对后分别在每配对点间先连一条边, 然后在每个顶点画(dj−1)/2个环. 该图的度序列就是已知数组.

一个非负数组如果是某简单图度序列, 我们称它为可图序列, 简称图序列.

5定理4
一个简单图G的n个点的度不能互不相同

因为图G为简单图,所以Δ(G)≤n-1

  1. 若G没有孤立点, 则 1 ≤ d ( v ) ≤ n − 1 , ∀ v ∈ V ( G ) 1 \le d(v) \le n - 1,\forall v \in V(G) 1d(v)n1,vV(G)
    由鸽笼原理:必有2个顶点的度数相同
  2. 若G只有1个孤立点, 设G1表示G去掉孤立点后的部分, 则:
    1 ≤ d ( v ) ≤ n − 2 , ∀ v ∈ V ( G 1 ) 1 \le d(v) \le n - 2,\forall v \in V({G_1}) 1d(v)n2,vV(G1)
    由鸽笼原理:在G1里必有2个顶点的度数相同
  3. 若G有2个以上的孤立点, 则定理显然成立

图序列

可图序列,简称图序列:是某简单图度序列的一个非负数组

5
作图:倒着作图

  1. 对图G的点进行编号,分别对应降序的图序列的每个数
  2. 从最终的图序列开始作图
  3. 每次加一个点,该点与已有的一些点相连

偶图的判定

一个图是偶图当且仅当它不包含奇圈

必要性 设G是具有二分类(X, Y)的偶图, 并且
C = v0v1… vkv0是G的一个圈.
不失一般性, 可假定 v 0 ∈ X {v_0} \in X v0X
一般地 v 2 i ∈ X {v_{2i}} \in X v2iX, v 2 i + 1 ∈ Y {v_{2i + 1}} \in Y v2i+1Y
又因为 v 0 ∈ X {v_0} \in X v0X, 所以 v k ∈ Y {v_k} \in Y vkY,由此C是偶圈.
充分性: 在G中任意选取点u, 定义V的分类如下:
X = {x | d(u, x) 是偶数, x ∈ V (G)}
Y = {y | d(u, y) 是奇数, y ∈ V (G)}
下面证明:对X中任意两点v与w都不相邻!(v,w ∈Y 的情形自己证明!)
设v与w是X中任意两个顶点. P是一条最短(u, v)路, 而Q是一条最短的(u, w)路.
又设u1是P和Q的最后一个交点. 由于P, Q是最短路, 所以, P, Q中u到u1段长度相同, 因此奇偶性相同. 又P, Q的长均是偶数, 所以, P, Q中u1v段和u1w段奇偶性相同.
如果v与w邻接, 则可得到奇圈, 矛盾!

要判断一个图是偶图, 找到二部划分
要判断一个图不是偶图, 仅需找到一个奇圈

积图

如果G1那个维度相同且G2那个维度相邻,那么可以产生n1m2条边
如果G2那个维度相同且G1那个维度相邻,那么可以产生n2m1条边

路与连通性

30习题12
若δ≥2, 则G中必然含有圈

只就连通图证明即可!
设P=v1v2……vk-1vk是G中的一条最长路
由于δ≥2, 所以vk必然有相异于vk-1的邻接顶点
又W是G中最长路, 所以, 这样的邻接点必然是v1, v2, …., vk-2中之一
设该点为vm, 则vmvm+1….vkvm为G中圈

30习题
若G是简单图且δ≥k, 则G中存在k长路

10定理7
若图G不连通, 则其补图连通.

∀ u , v ∈ V ( G ˉ ) \forall u,v \in V(\bar G) u,vV(Gˉ)
若u, v在G的同一分支中, 设w是与u, v处于不同分支中的点, 则在G的补图中, u与w, v与w分别相邻,所以u与v在G的补图中是连通的.
若u与v在G的不同分支中, 则在G的补图中必然相邻,所以连通

若G是简单图且δ(G)≥(n−1)/2, 则G是连通的

选择G的任意两点u和v
若u和v相邻, 则结论成立
假设u和v不相邻,仅需证明u和v有1个公共邻点.
因G是简单图, 故|N(u)|≥δ(G)≥(n−1)/2, |N(v)|≥δ(G)≥(n−1)/2.
则有|N(u)|+ |N(v)|≥ n−1
所以u和v至少有1个邻点

最短路算法:标号

邻接代数

邻接矩阵的对角线=0
邻接矩阵元素=1,表示两点相邻
邻接矩阵的行和=该行对应的点的度
邻接矩阵的列和=该列对应的点的度
图连通↔图的邻接矩阵不能化为类似对角的形式
同一个图的2种不同的邻接矩阵相似
邻接矩阵^n的元素=长度为n的途径数
邻接矩阵^2的对角线元素=对应点的度
邻接矩阵^3的对角线元素=含有对应点的三角形的数目*2

关联矩阵n*m
关联矩阵的行和=该行对应的点的度
关联矩阵的列和=2

18定理14
设简单图G的特征多项式为:
f ( G , λ ) = ∣ λ E − A ∣ = λ n + a 1 λ n − 1 + a 2 λ n − 2 + ⋯ + a n − 1 λ + a n f(G,\lambda ) = \left| {\lambda E - A} \right| = {\lambda ^n} + {a_1}{\lambda ^{n - 1}} + {a_2}{\lambda ^{n - 2}} + \cdots + {a_{n - 1}}\lambda + {a_n} f(G,λ)=λEA=λn+a1λn1+a2λn2++an1λ+an
求证:(1) a1=0;
(2) –a2=m(G);
(3) –a3是G中三角形数目的2倍;

对每个1 ≤ i≤n, (−1)^i ai是A(G)的所有i阶主子式之和

设简单图A(G)的谱为
S p e c ( G ) = [ λ 1 λ 2 ⋯ λ s m 1 m 2 ⋯ m s ] Spec(G) = \left[\begin{array}{ccc} {{\lambda _1}} & {{\lambda _2}} & \cdots & {{\lambda _s}} \cr {{m_1}} & {{m_2}} & \cdots & {{m_s}} \cr \end{array}\right] Spec(G)=[λ1m1λ2m2λsms]
∑ i = 1 S m i λ i 2 = 2 m ( G ) \sum\limits_{i = 1}^S {{m_i}{\lambda _i}^2 = 2m} (G) i=1Smiλi2=2m(G)
邻接矩阵的特征值平方之和=2*边数

由线性代数:
∑ i = 1 S m i λ i 2 = ∑ i = 1 n a i i ( 2 ) \sum\limits_{i = 1}^S {{m_i}{\lambda _i}^2 = } \sum\limits_{i = 1}^n {{a_{ii}}^{(2)}} i=1Smiλi2=i=1naii(2)
aii(2)表示点vi的度数, 由握手定理:
∑ i = 1 S m i λ i 2 = ∑ i = 1 n a i i ( 2 ) = ∑ i = 1 n d ( v i ) = 2 m ( G ) \sum\limits_{i = 1}^S {{m_i}{\lambda _i}^2 = } \sum\limits_{i = 1}^n {{a_{ii}}^{(2)}} = \sum\limits_{i = 1}^n {d({v_i})} = 2m(G) i=1Smiλi2=i=1naii(2)=i=1nd(vi)=2m(G)

完全图的邻接谱 S p e c A ( K n ) = ( − 1 n − 1 n − 1 1 ) SpecA({K_n}) = \left(\begin{array}{ccc} { - 1} & {n - 1} \cr {n - 1} & 1 \cr \end{array} \right) SpecA(Kn)=(1n1n11)

A ( K n ) = ( 0 1 ⋯ 1 1 1 0 ⋯ 1 1 ⋯ ⋯ ⋯ ⋯ ⋯ 1 1 ⋯ 0 1 1 1 ⋯ 1 0 ) A({K_n}) = \left(\begin{array}{ccc} 0 & 1 & \cdots & 1 & 1 \cr 1 & 0 & \cdots & 1 & 1 \cr \cdots & \cdots & \cdots & \cdots & \cdots \cr 1 & 1 & \cdots & 0 & 1 \cr 1 & 1 & \cdots & 1 & 0 \cr \end{array} \right) A(Kn)=0111101111011110

  1. 后面(n-1)列加到第1列
  2. |kA|=k|A|
  3. 第1列加到后面(n-1)列
  4. 按照第1行展开

∣ λ E − A ( K n ) ∣ = ∣ λ − 1 − 1 ⋯ − 1 − 1 − 1 λ − 1 ⋯ − 1 − 1 ⋯ ⋯ ⋯ ⋯ ⋯ − 1 − 1 − 1 ⋯ − 1 λ ∣ = ∣ λ − n + 1 − 1 − 1 ⋯ − 1 − 1 λ − n + 1 λ − 1 ⋯ − 1 − 1 ⋯ ⋯ ⋯ ⋯ ⋯ λ − n + 1 − 1 − 1 ⋯ − 1 λ ∣ = ( λ − n + 1 ) ∣ 1 − 1 − 1 ⋯ − 1 − 1 1 λ − 1 ⋯ − 1 − 1 ⋯ ⋯ ⋯ ⋯ ⋯ 1 − 1 − 1 ⋯ − 1 λ ∣ = ( λ − n + 1 ) ∣ 1 0 0 ⋯ 0 0 1 λ + 1 0 ⋯ 0 0 ⋯ ⋯ ⋯ ⋯ ⋯ 1 0 0 ⋯ 0 λ + 1 ∣ = ( λ − n + 1 ) ( λ + 1 ) n − 1 \left| {\lambda E - A({K_n})} \right| = \left|\begin{array}{ccc} \lambda & { - 1} & { - 1} & \cdots & { - 1} & { - 1} \cr { - 1} & \lambda & { - 1} & \cdots & { - 1} & { - 1} \cr \cdots & \cdots & \cdots & {} & \cdots & \cdots \cr { - 1} & { - 1} & { - 1} & \cdots & { - 1} & \lambda \cr \end{array} \right| \\ = \left|\begin{array}{ccc} {\lambda - n + 1} & { - 1} & { - 1} & \cdots & { - 1} & { - 1} \cr {\lambda - n + 1} & \lambda & { - 1} & \cdots & { - 1} & { - 1} \cr \cdots & \cdots & \cdots & {} & \cdots & \cdots \cr {\lambda - n + 1} & { - 1} & { - 1} & \cdots & { - 1} & \lambda \cr \end{array} \right| \\ = \left( {\lambda - n + 1} \right)\left|\begin{array}{ccc} 1 & { - 1} & { - 1} & \cdots & { - 1} & { - 1} \cr 1 & \lambda & { - 1} & \cdots & { - 1} & { - 1} \cr \cdots & \cdots & \cdots & {} & \cdots & \cdots \cr 1 & { - 1} & { - 1} & \cdots & { - 1} & \lambda \cr \end{array} \right| \\ = \left( {\lambda - n + 1} \right)\left|\begin{array}{ccc} 1 & 0 & 0 & \cdots & 0 & 0 \cr 1 & {\lambda + 1} & 0 & \cdots & 0 & 0 \cr \cdots & \cdots & \cdots & {} & \cdots & \cdots \cr 1 & 0 & 0 & \cdots & 0 & {\lambda + 1} \cr \end{array} \right| \\ = \left( {\lambda - n + 1} \right){(\lambda + 1)^{n - 1}} λEA(Kn)=λ111λ111111111λ=λn+1λn+1λn+11λ111111111λ=(λn+1)1111λ111111111λ=(λn+1)1110λ+1000000000λ+1=(λn+1)(λ+1)n1

极图

21定理16
连通偶图的2部划分是唯一的

设连通偶图G的二部划分为V1∪V2 =V .
取v∈V1, 由于G 连通, 对任何u∈V1∪V2, G中有连接u 和v的路, 故d(v, u)有定义.
因任一条以v为起点的路交替地经过V1和V2 的点, 可知一个点u∈V2 当且仅当d(v, u)是奇数. 这唯一地决定了G的2部划分

21
连通偶图的2部划分是唯一的.
n阶完全偶图的边数≤ ⌊ n 2 4 ⌋ \left\lfloor {{{{n^2}} \over 4}} \right\rfloor 4n2
不包含三角形的n阶简单图的边数≤ ⌊ n 2 4 ⌋ \left\lfloor {{{{n^2}} \over 4}} \right\rfloor 4n2
n阶l部图G有最多边数的充要条件是 G ≅ T l , n G \cong {T_{l,n}} GTl,n

22 Turan定理
G的度序列弱于H→G的边数≤H的边数
若n阶简单图G且不包含Kl+1,则G度弱于某个完全l部图H,且若G具有与H相同的度序列,则G≌H
若n阶简单图G且不包含Kl+1,则 m ( G ) ≤ m ( T l , n ) m(G)\le m({T_{l,n}}) m(G)m(Tl,n)
仅当 G ≅ T l , n G \cong {T_{l,n}} GTl,n时, 有 m ( G ) = m ( T l , n ) m(G) = m({T_{l,n}}) m(G)=m(Tl,n)

不考!交图、团图

26定理22
每个图均为交图

设G是任意一个图,令:S=E(G),V(G)={v1, v2, …, vn}
令Si={e|e与vi相关联}, F={Si}则: G ≅Ω(F).
Si与Sj相交非空,当且仅当对应的顶点共同关联一条边.
所以,G是交图

设S是一个集合, ℱ={S1, S2, …, Sn}是S的不同非空子集构成的族, 它们的并是S
集族ℱ的交图, 记为Ω(ℱ), 定义为:
V(Ω(ℱ))=ℱ, 当i≠j且Si∩Sj≠Φ时, Si与Si邻接;
交集非空时,邻接

如果存在集合S的一个集族ℱ,使G ≅Ω( ℱ),则称图G是S上的一个交图

G是S上的交图, 如果S的基数最小, 称S的基数为图G的交数,记为 ν ( G ) \nu (G) ν(G)

(n, m)连通图G的交数 ν ( G ) ≤ m \nu (G) \le m ν(G)m

若图G为n(n>3)阶连通图, 当且仅当G中没有三角形时, 有 ν ( G ) = m \nu (G) = m ν(G)=m

简单图G的一个:V中一个子集V1, 使G[V1]是完全图
点子集的导出子图是完全图
一个给定的图G的团图是G的极大团的族构成的交图
团图K(G)的每个顶点代表G的一个极大团
团图K(G)的两个顶点相邻当且仅当对应的两个团有至少一个公共顶点

2 树

  1. 顶点v的离心率:与其它顶点的距离的最大值
    e ( v ) = max ⁡ { d ( u , v ) ∣ u ∈ V ( G ) } e(v) = \max \left\{ {d(u,v)\left| {u \in V(G)} \right.} \right\} e(v)=max{d(u,v)uV(G)}
  2. 图的直径:所有顶点的离心率的最大值
  3. 图的半径:所有顶点的离心率的最小值
    r ( G ) = min ⁡ { e ( v ) ∣ v ∈ V ( G ) } r(G) = \min \left\{ {e(v)\left| {v \in V(G)} \right.} \right\} r(G)=min{e(v)vV(G)}
  4. 图的中心点离心率=半径的点,即离心率的最小的点
  5. 图的中心:中心点的集合

画出所有不同构的n阶树(n>3)

树中存在的最长路进行枚举
n阶树中能够存在的最长路最小值为2,最大值为n-1

33推论2
非平凡树至少有2片树叶

设P=v1v2…vk是非平凡树T中一条最长路
所以v1与vk在T中的邻接点只能有一个, 否则, 要么推出P不是最长路, 要么推出T中存在圈, 这都是矛盾!
所以v1与vk是树叶

因为握手定理
所以2m = 度之和①
因为树,所以m=n-1②
假设非平凡树至多有1片树叶,即至多有1个度=1的点
所以2(n-1) = 2m = 度之和≥ 1+2(n-1),矛盾

32定理1
图G是 ↔ G中任意2点都被唯一的路连接

“必要性”
若不然, 设P1与P2是连接u与v的两条不同的路
那么由这两条路的全部或部分将构成一个圈, 这与G是树相矛盾.
“充分性”
首先, 因G的任意两点均由唯一路相连, 所以G是连通的
其次, 若G中存在圈, 则在圈中任取点u与v, 可得到连接u与v的两条不同的路, 与条件矛盾

32定理1
图G是 ↔ 在图G的任意2个不邻接顶点之间添加1条边后, 可以得到唯一圈

设u与v是树T的任意2个不邻接顶点
由32定理1知,有唯一路P连接u与v
所以P∪{uv} 是一个圈
显然,由P的唯一性也就决定了P∪{uv} 的唯一性

32定理1
图G是 ↔ 图G连通,m=n-1 ↔ 图G无圈,m=n-1

对n作数学归纳
当n=1时, 等式显然成立;
设n=k时等式成立
考虑n=k+1的树T
由定理1, T中至少有两片树叶
设u是T中树叶, 考虑T1=T−u, 则T1为k阶树, 于是m(T1)=k−1, 得m(T)=k

33推论1
具有k个分支的森林, 则m=n−k

43习题3
设G是树且Δ≥k, 则G至少有k片树叶(1度顶点)

反证法
设G有n个顶点
假设至多k−1个1度顶点
因为Δ≥k,所以由握手定理得:
2 m ( G ) = ∑ v ∈ V ( G ) d ( v ) ≥ k − 1 + k + 2 ( n − k ) = 2 n − 1 > 2 n − 2 2m(G) = \sum\limits_{v \in V(G)} {d(v)} \ge k - 1 + k + 2(n - k) = 2n - 1 > 2n - 2 2m(G)=vV(G)d(v)k1+k+2(nk)=2n1>2n2
所以m(G)>n−1, 与G是树矛盾!

43习题4
设G是森林且恰有2k个奇度点, 则在G中有k条边不重合的路P1, P2, …, Pk, 使得 E ( G ) = E ( P 1 ) ∪ E ( P 2 ) ∪ ⋯ ∪ E ( P k ) E(G) = E({P_1}) \cup E({P_2}) \cup \cdots \cup E({P_k}) E(G)=E(P1)E(P2)E(Pk)

对k作数学归纳
当k=1时, G只有两个奇数度顶点, 此时, 容易证明, G是一条路;
设当k=t时, 结论成立
令k=t+1
在G中一个分支中取两个一度顶点u与v, 令P是连接u与v的唯一路, 则G−E§是有2t个奇数顶点的森林, 由归纳假设, 它可以分解为t条边不重合的路之并, 所以G可以分解为t+1条边不重合的路之并

设S={d1, d2, …, dn}是n个正整数的序列, 它们满足d1≥d2 ≥ … ≥ dn, ∑di=2(n−1),那么存在一棵树T,其度序列为S

对n作数学归纳
当n=1和2时, 结论显然
假设对n=k时结论成立
考虑n=k+1
首先, 序列中包含1
否则, 序列之和大于2k, 与条件矛盾!
所以, dk+1=1.从序列中删掉d1和dk+1, 增加数d*=d1−1放在它应该在的位置(按从大到小排列),得到序列S1
该序列含k个数, 序列和为2(k−1), 由归纳假设,存在树T1, 它的度序列为S1.
现在, 增加结点v, 把它和T1中点d*相连得到树T
树T为所求

34定理3
每棵树的中心由1个点或2个相邻点组成

对树T的阶数n作归纳
当n=1或2时, 结论显然成立
设对n<k(k ≥ 3)的树结论成立
设T是k阶树
容易知道:删掉T的所有叶, 得到的树T1的每个点的离心率比它们在T中离心率减少1(T中叶子点的离心率比其邻点大1)
又因T的叶不能是中心点, 所以T的中心点在T1中
这样, 若点u的离心率在T中最小, 则在T1中依然最小(T1中每个点的离心率都比T中的对应点小1), 即说明T的中心点是T1的中心点(中心不变), 反之亦然
因为T1的阶数<k, 所以, 由归纳假设, T1的中心为一个点或两个相邻点组成, 即证明T的中心由一个点或两个相邻点组成

生成树

35定理5
每个连通图至少包含1棵生成树

如果连通图G是树, 则其本身是一棵生成树;
若连通图G中有圈C, 则去掉C中一条边后得到的图仍然是连通的, 这样不断去掉G中圈, 最后得到一个G的无圈连通子图T, 它为G的一棵生成树

连通图G的生成树一般不唯一

35推论
若G是(n, m)连通图,则m≥n-1

如果n阶空图G不连通且有n 个分支
给G加入1条边最多减少G的1个分支
那么要使G连通, 即1个分支, 则至少要加入n−1条边

生成树的棵数

递推

图G的生成树的棵数 = 图G删去边e后的生成树的棵数 + 图G收缩边e后的生成树的棵数
图G的生成树的棵数 = 图G加上边e后的生成树的棵数 - 图G加上边e再收缩边e后的生成树的棵数

  1. e不是自环
  2. 删边或收缩边后的图要连通

矩阵树定理

无环图G的Laplacian矩阵L=(lij) = 度矩阵 - 邻接矩阵
图G的生成树的棵数 = L的任意一个元素lij的代数余子式的值

完全图的L矩阵
L ( K n ) = [ n − 1 − 1 ⋯ − 1 − 1 n − 1 ⋯ − 1 ⋯ − 1 − 1 ⋯ n − 1 ] L({K_n}) = \left[\begin{array}{ccc} {n - 1} & { - 1} & \cdots & { - 1} \cr { - 1} & {n - 1} & \cdots & { - 1} \cr {} & \cdots & {} & {} \cr { - 1} & { - 1} & \cdots & {n - 1} \cr \end{array}\right] L(Kn)=n1111n1111n1n*n的矩阵
完全图的生成树的棵数 τ ( K n ) = n n − 2 \tau ({K_n}) = {n^{n - 2}} τ(Kn)=nn2=
第1行第1列元素的代数余子式=
( − 1 ) 1 + 1 ∣ n − 1 − 1 ⋯ − 1 − 1 n − 1 ⋯ − 1 ⋯ − 1 − 1 ⋯ n − 1 ∣ = ∣ 1 1 ⋯ 1 − 1 n − 1 ⋯ − 1 ⋯ − 1 − 1 ⋯ n − 1 ∣ = ∣ 1 1 ⋯ 1 0 n ⋯ 0 ⋯ 0 0 ⋯ n ∣ = n n − 2 {( - 1)^{1 + 1}}\left|\begin{array}{ccc} {n - 1} & { - 1} & \cdots & { - 1} \cr { - 1} & {n - 1} & \cdots & { - 1} \cr {} & \cdots & {} & {} \cr { - 1} & { - 1} & \cdots & {n - 1} \cr \end{array}\right| = \left|\begin{array}{ccc} 1 & 1 & \cdots & 1 \cr { - 1} & {n - 1} & \cdots & { - 1} \cr {} & \cdots & {} & {} \cr { - 1} & { - 1} & \cdots & {n - 1} \cr \end{array}\right| = \left|\begin{array}{ccc} 1 & 1 & \cdots & 1 \cr 0 & n & \cdots & 0 \cr {} & \cdots & {} & {} \cr 0 & 0 & \cdots & n \cr \end{array}\right| = {n^{n - 2}} (1)1+1n1111n1111n1=1111n1111n1=1001n010n=nn2(n-1)*(n-1)的矩阵

  1. 后面(n-1)行加到第1行
  2. 第1行加到后面(n-1)行
  3. 按照第1列展开

43习题14
若e为Kn的一条边, 则 τ ( K n − e ) = ( n − 2 ) n n − 3 \tau ({K_n} - e) = (n - 2){n^{n - 3}} τ(Kne)=(n2)nn3

证法一:
τ ( K n ) = n n − 2 \tau ({K_n}) = {n^{n - 2}} τ(Kn)=nn2
若e为Kn的一条边, 由Kn中的边的对称性和每棵生成树的边数为n−1
Kn的所有生成树的总边数= ( n − 1 ) n n − 2 (n - 1){n^{n - 2}} (n1)nn2
所以, 每条边(e这条边)出现在生成树的次数= ( n − 1 ) n n − 2 1 2 n ( n − 1 ) = 2 n n − 3 {{(n - 1){n^{n - 2}}} \over {{1 \over 2}n(n - 1)}} = 2{n^{n - 3}} 21n(n1)(n1)nn2=2nn3
所以, Kn−e 对应的生成树的棵数为(把包含e的生成树减掉):
τ ( K n − e ) = n n − 2 − 2 n n − 3 = ( n − 2 ) n n − 3 \tau ({K_n} - e) = {n^{n - 2}} - 2{n^{n - 3}} = (n - 2){n^{n - 3}} τ(Kne)=nn22nn3=(n2)nn3

证法二:
假设在Kn中去掉的边e=v1vn, 则Kn−e的Laplacian矩阵为:
L ( K n − e ) = [ n − 2 − 1 ⋯ 0 − 1 n − 1 ⋯ − 1 ⋯ 0 − 1 ⋯ n − 2 ] L({K_n−e}) = \left[\begin{array}{ccc} {n - 2} & { - 1} & \cdots & 0 \cr { - 1} & {n - 1} & \cdots & { - 1} \cr {} & \cdots & {} & {} \cr 0 & { - 1} & \cdots & {n - 2} \cr \end{array}\right] L(Kne)=n2101n1101n2
于是由矩阵树定理
无环图G的Laplacian矩阵L=(lij) = 度矩阵 - 邻接矩阵
图G的生成树的棵数 = L的任意一个元素lij的代数余子式的值
τ ( K n − e ) = ∣ n − 1 − 1 ⋯ − 1 − 1 − 1 n − 1 ⋯ − 1 − 1 ⋯ − 1 − 1 ⋯ n − 1 − 1 − 1 − 1 ⋯ − 1 n − 2 ∣ = ∣ n − 1 − 1 ⋯ − 1 − 1 − 1 n − 1 ⋯ − 1 − 1 ⋯ − 1 − 1 ⋯ n − 1 − 1 − 1 − 1 ⋯ − 1 n − 1 ∣ + ∣ n − 1 − 1 ⋯ − 1 0 − 1 n − 1 ⋯ − 1 0 ⋯ − 1 − 1 ⋯ n − 1 0 − 1 − 1 ⋯ − 1 − 1 ∣ = ( n − 2 ) n n − 3 \tau ({K_n} - e) = \left| \begin{array}{ccc} {n - 1} & { - 1} & \cdots & { - 1} & { - 1} \cr { - 1} & {n - 1} & \cdots & { - 1} & { - 1} \cr {} & {} & \cdots & {} & {} \cr { - 1} & { - 1} & \cdots & {n - 1} & { - 1} \cr { - 1} & { - 1} & \cdots & { - 1} & {n - 2} \cr \end{array} \right| = \left| \begin{array}{ccc} {n - 1} & { - 1} & \cdots & { - 1} & { - 1} \cr { - 1} & {n - 1} & \cdots & { - 1} & { - 1} \cr {} & {} & \cdots & {} & {} \cr { - 1} & { - 1} & \cdots & {n - 1} & { - 1} \cr { - 1} & { - 1} & \cdots & { - 1} & {n - 1} \cr \end{array} \right| + \left| \begin{array}{ccc} {n - 1} & { - 1} & \cdots & { - 1} & 0 \cr { - 1} & {n - 1} & \cdots & { - 1} & 0 \cr {} & {} & \cdots & {} & {} \cr { - 1} & { - 1} & \cdots & {n - 1} & 0 \cr { - 1} & { - 1} & \cdots & { - 1} & { - 1} \cr \end{array} \right| = \left( {n - 2} \right){n^{n - 3}} τ(Kne)=n11111n11111n11111n2=n11111n11111n11111n1+n11111n11111n110001=(n2)nn3

最小生成树

40kruskal

  1. 边的权值进行升序排序
  2. 选择权最小的边
  3. 从还没有选的边集中选取边,使得
    1. 边导出子图为无圈图
    2. 边的权尽可能小
  4. 如果选不出这样的边了,结束

42Prim

  1. 对于连通赋权图G的任意一个顶点u, 选择与点u关联的且权值最小的边作为最小生成树的第一条边e1;
  2. 在接下来的边e2, e3, …, en-1 , 在与一条已经选取的边只有一个公共端点的所有边中, 选取权值最小的边.

破圈

  1. 取赋权图G的任意圈
  2. 去掉该圈中权值最大的一条边, 称为破圈
  3. 不断破圈, 直到G中没有圈为止
    最后剩下的G的子图为G的最小生成树

最优二元树

223 Huffman算法

  1. 初始: 令S={w1, w2, …,wi,…,wj,…wt};
  2. 从S中取出2个权值最小者 wi与wj
    画结点vi, 带权wi
    画结点vj, 带权wj
    画vi与vj的父亲v, 带权wi + wj;
    连接vi与v, 连接vj与v
  3. 令S = (S−{wi , wj})∪{wi+wj}; 删去兄弟,加上父亲
  4. 判断S是否只含1个元素, 若是, 停止, 否则转(2).

3 连通性

割边

删去一条割边后,图的连通分支数恰好增大1

46定理1
边e是图G的割边当且仅当e不在G的任何圈中

可以假设G连通
“必要性”
假设e在图G的某圈C中,且令e = uv
考虑P = C−e,则P是一条uv路
下面证明G−e连通
对任意 x, y∈V(G−e),由于G连通,所以存在x–y路Q
若Q不含e,则x与y在G−e里连通;
若Q包含有e,则可选择路:x–uPv–y, 说明x与y在G−e里也连通
所以,若边e在G的某圈中,则G−e连通
与e是G的割边矛盾!
“充分性”
假设e不是G的割边,则G−e连通,于是在G−e中存在一条u–v 路,
显然:该路并上边e得到G中一个包含边e的圈,矛盾

46推论
e为连通图G的一条边,如果e含于G的某圈中,则G−e连通

假设G−e不连通,于是e是割边
由定理1,e不在G的任意圈中,矛盾!

若G的每个顶点的度数均为偶数,则G 没有割边

假设G有割边e=uv
则G−e的含有顶点u(或v)的那个分支中点u(或v)的度数为奇,而其余点的度数为偶数,所以该分支的度的和≠偶数
与握手定理推论矛盾!

若G为k正则偶图(k≥2),则G 没有割边

假设G有割边e=uv
取G−e的其中一个分支G1,G1中只有1个顶点的度数是k−1,其余点的度数为k,并且G1仍然为偶图
若G1的2个顶点子集包含的顶点数分别为|Y|与|X|
不妨设包含|Y|个顶点的顶点子集包含度为k−1的那个点
那么G1的2个顶点子集的度和相等,即k|Y|−1= k|X|
但是因k≥2,所以等式不能成立!矛盾

假设G有割边e=uv,则G-e有两个连通分支G1和G2
不妨设 u ∈ V ( G 1 ) , v ∈ V ( G 2 ) u \in V({G_1}),v \in V({G_2}) uV(G1),vV(G2)
显然G1和G2都是偶图.
那么G1有二部划分 X , Y X,Y X,Y u ∈ X u \in X uX
则G1中仅有u点的度为k-1,其余顶点的度均为k
k ∣ Y ∣ = k ∣ X ∣ − 1 k|Y| = k|X| - 1 kY=kX1
因k≥2,等式不能成立!矛盾

割点

在G中, 如果E(G)可以划分为两个非空子集E1与E2, 使G[E1]和G[E2]以点v为公共顶点, 称v为G的一个分离点,即非空边导出子图的公共顶点

如果满足 ω ( G − v ) > ω ( G ) \omega (G - v) > \omega (G) ω(Gv)>ω(G),称v是图G的割点
删去一个割点后,图的连通分支数至少增大1

当图无自环时,分离点=割点
G无环且非平凡,则v是G的分离点,当且仅当 ω ( G − v ) > ω ( G ) \omega (G - v) > \omega (G) ω(Gv)>ω(G)

设v是G的分离点,则E(G)可划分为两个非空边子集E1与E2,使G[E1]和G[E2]恰好以v为公共点
由于G没有自环,所以,G[E1]和G[E2]分别至少包含异于v的G的点,这样,G−v的分支数比G的分支数至少多1,所以: ω ( G − v ) > ω ( G ) \omega (G - v) > \omega (G) ω(Gv)>ω(G)

47定理2
树T的点v是割点 ↔ 点v是树的分支点,即d(v)>1

“必要性”
假设d(v)=1, 即v是树叶,显然不能是割点
“充分性”
设v是分支点,则d(v)>1
于是设x与y是v的邻点
由树的性质,只有唯一路连接x与y,所以G−v分离x与y, 即v为割点

47定理3
设v是简单连通图G的一个顶点,则v是G的割点,当且仅当V(G−v)可以划分为两个非空子集V1与V2,使得对任意x∈V1, y∈V2,点v在每一条x,y路

“必要性”
v是简单连通图G的割点,由定理,G−v至少有两个连通分支
设其中一个分支的顶点集为V1, 另一个分支的顶点集为V2
对于任意的x∈V1, y∈V2, 如果点v不在某一条x,y路上
那么,该路也是连接G−v中的x与y的路,这与v是G的割点矛盾
“充分性”
若v不是图G的割点,那么G−v连通,因此在G−v中存在x,y路,当然也是G中一条没有经过点v的x, y路
矛盾

66习题5
恰有2个非割点的连通简单图是一条

设T是G的一棵生成树
因为G有n−2个割点
所以T有n−2个割点
所以T只有2片树叶
所以T是一条路
所以G的任意生成树为路
若一个简单图的任意生成树为路,则该图为圈或路
若G为圈,则G没有割点,矛盾
所以G为路

66习题6
非平凡简单连通图至少有2个非割点

由于G是无环非平凡连通图,所以存在非平凡生成树
非平凡生成树至少2片树叶,它不能为割点
所以,它也不能为G的割点
35定理5
每个连通图至少包含1棵生成树
33推论2
非平凡树至少有2片树叶
47定理2
树T的点v是割点 ↔ 点v是树的分支点,即d(v)>1

66习题7
若v是简单图G的割点,则它不是G的补图的割点

v是简单图G的割点,则G−v有至少2个连通分支
现任取 x , y ∈ V ( G − v ) x,y \in V(G - v) x,yV(Gv)
若x, y在G−v的同一分支中,令u是与x, y处于不同分支的点,那么x与y在G−v的补图中通过u连通
若x, y在G−v的不同分支中,则它们在G−v的补图中邻接
所以若v是简单图G的割点,则它不是G的补图的割点

块:没有分离点的连通图

47定义3
分离点:2个边导出子图的唯一公共点
块:没有分离点的连通图

对于图G的一个子图B,如果:
(1) B是块,即是无分离点的连通图
(2) 不存在真包含B的块(极大子图)
B不是其它块的真子图
那么B称为是图G的一个

块的个数

  1. 分离点
  2. 割边都是图G的1个

48定理4
设G是简单图, 若n=|V(G)|≥3,则G是当且仅当G的任意2个点位于同一圈上且G无环
推论
设G是简单图, 若n=|V(G)|≥3,则G是当且仅当G的任意2条边位于同一圈上且G无孤立点

(必要性)设G是块
显然G没有割点(简单图无自环)且|V(G)|≥3 ,对任意u, v∈V(G),下面证明u,v位于某一圈上.
对d(u,v) 作数学归纳法证明
当d(u,v)=1时,由于G是至少3个点的块,所以,边uv不能为割边,否则,u或v为割点,矛盾
由割边性质,uv必然在某圈中
设当d(u,v)<k时结论成立
设d(u,v)=k
设P是一条最短u,v路,w是v前面一点,则d(u,w)=k−1.
由归纳假设,u与w在同一圈C =P1∪P2上
考虑G−w
由于G是块,所以G−w连通
设Q是一条在G−w中的u,v路,并且设它与C的最后一个交点为x
则uP1xvwP2u为包含u, v的圈
(充分性):用反证法
假设G不是块,则G中有割点v,所以G−v至少两个分支
设x, y是G−v的两个不同分支中的点,则x, y在G中不能位于同一圈上,矛盾!

49定理5
点v是简单图G的割点当且仅当v属于G的至少2个不同的
简单图中的与图中割点的内在联系:不同的公共点一定是图的割点

(必要性) 设v是G的割点
由割点定义:E(G)可以划分为两个边子集E1与E2
显然G[E1]与G[E2]有唯一公共顶点v
设B1与B2分别是G[E1]和G[E2]中包含v的块,显然它们也是G的块
即证明v至少属于G的两个不同块
(充分性) 如果v属于G的两个不同块,我们证明:v一定是图G的割点
设包含v的两个块是B1与B2
那么两个块分别至少有两个顶点
假如v不是割点,在B1与B2中分别找异于v的一个点x与y, x∈V(B1), y∈V(B2), 则在G−v中有连接x与y的路P
则B1∪B2无割点, 这与B1, B2是块矛盾!

55推论
对于一个n≥3的无环图G, 下面四个命题等价:
(1) G连通且无割点(
(2) G是2连通的
(3) G中任意2点位于同一个圈上
(4) G无孤立点, 且任意2条边在同一个圈上
n≥3的简单2连通图就是

连通度

删去连通图的点割之后,该图不连通
删去连通图的边割之后,该图不连通

连通度κ(G):删去至少κ(G)≥0个点之后,图不连通或成为平凡图
非连通图κ(G)=0

对于连通图,
若存在点割,那么连通度κ(G)=最小点割的点数
若不存在点割,那么连通度κ(G)=n-1
完全图没有点割

k连通图:连通度κ(G)≥k

边连通度λ(G):删去至少λ(G)≥0条边之后,图不连通
非连通图或平凡图λ(G)=0

k边连通图:边连通度λ(G)≥k

k连通→k边连通

G的点连通度κ(G)=k<n-1
↔G中存在k点割,且最小点割的点数=k
→G中存在k点割κ(G)≤k
G的点连通度κ(G)=n-1↔G中不存在点割

G的边连通度λ(G)=k
↔G中存在k边割,且最小边割的边数=k
→G中存在k边割λ(G)≤k

  1. κ(G)-1≤κ(G-v)
  2. λ(G)-1≤λ(G-e)≤λ(G)
  3. κ(G)-1≤κ(G-e)≤κ(G)
  4. κ(G)≤λ(G)≤δ(G)≤△(G)≤n-1
    比如52页的图可以使得不等式严格成立

证明

  1. κ(G)-1≤κ(G-v)
    若G−v无点割,即删除至少(点数-1)个点才能变成平凡图,则κ(G−v)=(n−1)−1=n−2
    因为κ(G)≤n−1,所以κ(G)-1≤κ(G-v)=n−2
    若G−v存在点割,设Vmin为其最小点割,则κ(G−v)=|Vmin|
    因为{v}∪Vmin是G的点割,所以κ(G)≤|{v}∪Vmin|=κ(G−v)+1
  2. λ(G)-1≤λ(G-e)≤λ(G)
  3. κ(G)-1≤κ(G-e)≤κ(G)
  4. κ(G)≤λ(G)≤δ(G)

52定理7
设G是(n,m)连通图, 则点连通度κ(G)≤(2m/n)向下取整
56
k连通图的边数m≥(nk/2)向上取整

握手定理①
κ(G)≤λ(G)≤δ(G)②

52引理1
设G是(n, m)简单图, 若δ(G)≥(n/2)向下取整,则G连通λ(G)=δ(G)

反证法
假设不连通,那么至少有2个连通分支
所以一定有1个分支H的点数≤(n/2)向下取整
因为图G是简单图
所以分支H的最大度≤(n/2)向下取整-1<(n/2)向下取整
所以
矛盾

54 Menger定理
分离不相邻的2个点的最小点数=内部顶点不同的路的最大数目
分离不同的2个点的最小边数=边不重复的路的最大数目
55
非平凡简单图G是k(k≥2)连通的, 当且仅当G的点数≥k+1且G的任意2个顶点间至少存在k条内部不交路
非平凡的图G是k(k≥2)边连通的,当且仅当G的点数≥k且G的任意2个顶点间至少存在k条边不重的路

4 邮递员图和售货员图

Euler图↔连通顶点度数为偶数

  1. n≥3,奇数时,完全图Kn是Euler图
  2. n≥2,偶数时,超立方图Qn是Euler图
  3. n≥2, m≥2,都为偶数时,Km, n是Euler图
  4. 若G是非平凡Euler图,G的每个块也是Euler图

H图↔图G的闭包是H图

  1. n≥3时,完全图Kn是H图
  2. n≥2时,超立方图Qn是H图
  3. a≥2,b≥2,a=b时,Ka,b是H图

邮递员图:存在经过每条边的闭迹的连通图

若G和H是Euler图, 则 G □ H G□H GH是Euler图

首先证明:对任意u∈V(G), v∈V(H), 有: d ( u ) + d ( v ) = d ( ( u , v ) ) d(u) + d(v) = d((u,v)) d(u)+d(v)=d((u,v))
事实上, 由Cartesian Product的定义易知.
所以, G, H是Euler图, 那么 G □ H G□H GH的每个顶点的度均为偶数.
其次证明: G □ H G□H GH是连通的.
∀ ( u 1 , v 1 ) , ( u 2 , v 2 ) ∈ V ( G □ H ) \forall ({u_1},{v_1}),({u_2},{v_2}) \in V(G□H) (u1,v1),(u2,v2)V(GH)
由于G, H都是Euler图, 所以都连通. 设最短的u1,u2路.
最短的v1,v2路分别为: u 1 x 1 x 2 ⋯ x k u 2 {u_1}{x_1}{x_2} \cdots {x_k}{u_2} u1x1x2xku2 v 1 y 1 y 2 ⋯ y m v 2 {v_1}{y_1}{y_2} \cdots {y_m}{v_2} v1y1y2ymv2
那么, 由乘积图的定义:在乘积图中有路:
( u 1 , v 1 ) ( x 1 , v 1 ) ⋯ ( x k , v 1 ) ( u 2 , v 1 ) ( u 2 , y 1 ) ⋯ ( u 2 , y m ) ( u 2 , v 2 ) ({u_1},{v_1})({x_1},{v_1}) \cdots ({x_k},{v_1})({u_2},{v_1})({u_2},{y_1}) \cdots ({u_2},{y_m})({u_2},{v_2}) (u1,v1)(x1,v1)(xk,v1)(u2,v1)(u2,y1)(u2,ym)(u2,v2)
G □ H G□H GH是连通的且每个顶点的度均为偶数
G □ H G□H GH是Euler图

98习题8
类似43习题4
若G有2k>0个奇度点, 则存在k条边不重的迹Q1, Q2, …, Qk, 使得
E ( G ) = E ( Q 1 ) ∪ E ( Q 2 ) ∪ ⋯ ∪ E ( Q k ) E(G) = E({Q_1}) \cup E({Q_2}) \cup \cdots \cup E({Q_k}) E(G)=E(Q1)E(Q2)E(Qk)

不失一般性, 只就G是连通图进行证明
设G=(n,m)是连通图. 令vl, v2,…, vk, vk+1, …, v2k是G的所有奇度点
在vi与vi+k间连新边ei得图G*(1≤ i≤k).则G*是Euler图, 因此, 由Fleury算法得Euler环游C
在C中删去ei (1≤ i≤k). 得k条边不重的迹Qi (1≤ i≤k)

E图的判定

70定理1
对于非平凡连通图 G,下列陈述是等价的:
(1) G是E图
(2) G的顶点度数为偶数
(3) G的边集能划分为边不交圈的并
连通E图 G存在欧拉闭迹当且仅当G中顶点度数为偶数
连通非E图 G存在欧拉迹当且仅当G中只有2个顶点度数为奇数

最优环游:在具有非负权的赋权连通图中的具有最小权的环游
在Euler图中,任何Euler闭迹都是最优环游

76算法:在Euler图中,求Euler闭迹

尽可能避割边行走

  1. 任意选择一个顶点v0, 置w0=v0;
  2. 假设迹wi=v0e1v1…eivi已经选定, 那么按下述方法从E−{e1, e2, …, ei}中选取边ei+1:
    1. ei+1与vi相关联;
    2. 除非没有别的边可选择, 否则 ei+1不能是Gi=G−{e1, e2,…, ei}的割边。(避割边)
  3. 当(2)不能执行时, 算法停止

77算法:在具有非负权的赋权非Euler图中,求具有最小权的环游,即最优环游

  1. 求G的Euler生成母图G*,通过连接G中的奇度点,使其变成偶度点,并按照以下方式进行修改
    1. 在最佳方案中,各边的重数 ≤ 2
    2. 在最佳方案中,在每个圈上,重复边的总权值非重复边的总权值
  2. 在G的Euler生成母图G*中,求Euler闭迹(Fleury算法)

77算法:在恰好有2个奇点的图中,求最优Euler闭迹

  1. 在u与v间求出一条最短路 P; (最短路算法)
  2. 最短路 P上, 给每条边添加1条平行边得G的Euler生成母图G*;
  3. 在G的Euler生成母图G*中,求Euler闭迹(Fleury算法)

售货员图:存在经过每个点的的图

若G和H是H图, 则 G □ H G□H GH是H图

H图的判定

必要条件

78定理5
若G为H图,则对V(G)的任一非空顶点子集S,有w(G-S)≤|S|
若G为含有H路,则对V(G)的任一非空顶点子集S,有w(G-S)≤|S|+1
如果可以删去k个点,让图有k+1个分支,即w(G-S)>|S|,那么不是H图

98习题10
H图没有割点
H图是2连通图
如果图有割点,那么该图不是H图
如果偶图不等部,那么该图不是H图

(1)设图G不是2连通图
所以图G有割点
所以w(G-v)≥2>|v|=1
所以图G不是H图
所以H图是2连通图
(2)不妨设|X|<|Y|
w(G-X)=|Y|>|X|
所以图G不是H图

充分条件:对于n≥3的简单图G

  1. 对于n≥3的简单图G,如果图G中有最小度δ≥n/2,那么G是H图
  2. n≥3的完全图是H图(δ=n-1≥n/2)
  3. 对于n≥3的简单图G,如果图G中的任意2个不相邻顶点u与v,有d(u)+d(v)≥n,那么图G的闭包是完全图,那么图G的闭包是H图,那么图G是H图
  4. 对于n≥3的简单图G,如果图G的闭包是完全图,那么图G的闭包是H图,那么图G是H图
  5. 对于n≥3的简单图G,度序列是(d1, d2, …, dn),d1≤d2≤…≤dn,升序排序
    若对任意m<n/2,有dm > m或dn−m ≥ n−m,则G是H图
    前面部分的度>其排序,后面部分的度≥其排序
    若不存在m<n/2,使得dm ≤ m或dn−m < n−m,则G是H图
  6. 对于n≥3的简单图G,如果图G的边数m > C n − 1 2 C_{n-1}^2 Cn12+1,则G是H图
    具有n个顶点 C n − 1 2 C_{n-1}^2 Cn12+1条边的非H图只有C1, n以及C2, 5

充要条件:图G是H图↔图G的闭包是H图

图G是H图↔图G的闭包是H图
d(u)+d(v)≥n的不相邻的点u与v连接得到闭包

80
闭图:度和≥点数的2个点都相邻的简单图
闭图的交图是闭图

度极大非H图

85引理4
对于1≤m<n/2的图Cm,n是非H图

85定理9
若G是n ≥ 3的非H简单图,则G度弱于某个Cm,n图

售货员问题

在赋权完全图中,求具有最小权的H圈

88算法:在赋权完全图中,求具有最小权的H圈的权值之和的上界

  1. 取一个初始H圈C=v1v2, …, vnv1
  2. 如果交叉边的权之和 < 原来的H圈中对应边的权之和,那么修改
  3. W(H)≤修改后的H圈的权值之和

88算法:在赋权完全图中,求具有最小权的H圈的权值之和的下界

  1. 在G中删掉任意一点v得图G1
  2. 在图G1中求出一棵最小生成树 T
  3. 在v的关联边中选出2条权值最小者e1与e2
    若H是G的具有最小权的H圈, 则具有最小权的H圈的权值之和W(H) ≥ W(T) + W(e1) + W(e2)

不考!超H图

若图G是非H图, 但对于G中任意点v, 都有G−v是H图, 则称G是超H图
任意删去1个点之后都是H图的非H图
若G中没有H路, 但是对G中任意点v, G−v存在H路, 则称G是超可迹的

线图:图G的边集的交图

原图的边→线图的点
原图中边相邻→线图中点相邻

线图L(G)顶点数=G的边数
若e=uv是G的边, 则e作为L(G)的顶点度数为d(e)=d(u)+d(v)−2

一个连通图同构于它的线图当且仅当它是

L(G)≌L(H), 则除了K3和K1,3外, G≌H

95
若G是E图, 则L(G) 既是E图又是H图
若G是H图, 则L(G)是H图(G中的任意一个顶点在线图中都是一个团)

n次剖分图

图G的n次剖分图:将G的每条边中插入n个2度顶点, 记为 S n ( G ) S_n(G) Sn(G)
L n ( G ) = L ( S n − 1 ( G ) ) L_n(G)=L(S_{n-1}(G)) Ln(G)=L(Sn1(G))
图G是E图↔ L 3 ( G ) L_3(G) L3(G)为H图

若G是具有n个点(n ≥ 3)连通图且不是一条路, 则当k≥n‒3时, 图 L k ( G ) L^k(G) Lk(G)H图

peterson图

  1. 没有割点
  2. 没有割边
  3. 不是E图:有奇点 第70页
  4. 不是H图:因为不是H图,所以n=10,δ=3 第79页
  5. 超H图:任意删去1个点之后都是H图的非H图 第89页
  6. 完美匹配:104推论 如果3正则图没有割边,那么有完美匹配。
  7. 不可1因子分解:如果3正则图没有割边,那么是1个1因子和1个2因子之和 第109页
  8. 不是可平面图:可以收缩到K5 第136页
  9. 不是完美图:166页 导出子图有长度≥5的奇圈
  10. 点色数=3
    如果子图有奇圈,那么点色数 ≥ 3
    如果找得到一个正常k着色,那么点色数≤k
  11. 边色数=4=最大度+1

5 匹配和因子分解

匹配

100定理1
G的匹配M是最大匹配,当且仅当G不包含M增广路

“必要性”
(反证) 若G包含一条M增广路P, 则可令该增广路为:
P = v 0 v 1 v 2 ⋯ v 2 k v 2 k + 1 P = {v_0}{v_1}{v_2} \cdots {v_{2k}}{v_{2k + 1}} P=v0v1v2v2kv2k+1
显然, P中M中的边比非M中的边少一条.于是作新的匹配M1, 它当中的边由P中非M中边组成. M1中边比M中多一条, 这与M是G的最大匹配矛盾.
“充分性”
(反证) 若不然, 设M1是G的一个最大匹配, 则|M1|>|M|.
令H = M1ΔM.
H中边导出图的每个分支是(考虑由M1ΔM导出的子图):
■由M1与M中边交替组成的偶长圈(为什么不是奇圈?); 或
■由M1与M中边交替组成的路.
在每个偶圈中, M1与M中边数相等; 但因|M1|>|M|, 所以, 至少有一条路P, 其起点和终点都是M非饱和点, 于是, 它是G的一条M可扩路. 这与条件矛盾

偶图的匹配和覆盖

100定理1
图G的匹配M是最大匹配 ↔ G中不存在M可扩路

101定理2
设G=(X, Y)是偶图,则G存在饱和X每个顶点的匹配的充要条件是
∀ S ⊆ X , ∣ N ( S ) ∣ ≥ ∣ S ∣ \forall S \subseteq X,\left| {N(S)} \right| \ge \left| S \right| SX,N(S)S偶图存在完美匹配
(N(S)表示S的邻点的集合)
X的任意点子集S的邻点个数X的点子集S的点数

103定理3
设M是G的匹配, K是G的点覆盖, 若任意匹配的边数|M|=|K|任意覆盖的点数, 则M是最大匹配, 而K是最小点覆盖
任意匹配的边数 ≤ 最大匹配的边数 ≤ 最小覆盖的点数 ≤ 任意覆盖的点数

103定理4
偶图中,最大匹配的边数 = 最小覆盖的顶点数

图G有完美匹配当且仅当对V(G)的任意子集S, 有奇分支数目 o ( G − S ) ≤ ∣ S ∣ o(G - S) \le \left| S \right| o(GS)S
删去点集后的奇分支数目≤点集的点数

k正则k−1边连通的偶阶图存在完美匹配

每个至多包含2条割边(桥)的三正则图都存在完美匹配

1因子分解

n因子:n度正则的 图G的至少有1条边的生成子图

106定理6
K2n可1因子分解

102推论
若k>0,则k正则偶图存在完美匹配
106定理7
若k>0,则k正则偶图1因子分解

若图G是k正则偶图且k>0, 则G有完美匹配 M
那么G-E(M1)仍然是正则偶图
所以G-E(M1)有完美匹配 M2, 故可以得到一个图G的完美匹配序列M1, M2,…Mk.
由取法知M1, M2,…Mk两两无公共边, 即为G的1因子分解.

106定理8
如果3正则图有H圈,那么可1因子分解,那么没有割边

因为握手定理,所以点数为偶数
因为偶数个点的H圈可以分解为2个1因子的和
因为该图删去H圈的边集后,每个顶点的度=1,也是1个1因子
所以该图可以分解为3个1因子,其中H圈里面有2个

104推论
如果3正则图没有割边,那么有完美匹配。比如peterson图
如果3正则图至多包含2条割边,那么有完美匹配
107定理9
如果3正则图有割边,那么不可1因子分解

反证法

定理12
如果3正则图没有割边,那么是1个1因子和1个2因子之和

比如K4可分解为1个1因子和1个2因子之和
比如peterson图
2因子是五边形和五角星
1因子是连接五边形和五角星的5条边

2因子分解

108
H圈一定是2因子

定理10
K2n+1可2因子分解,是n个H圈的和

比如K3是1个H圈

定理11
K2n可分解为1个1因子和n-1个2因子之和

比如K4可分解为1个1因子和1个2因子之和

定理13
一个连通图是2可因子化的 ↔ 该连通图是偶数度正则图

习题

117习题1
每个k方体都有完美匹配(k≥2)

证法1:证明每个k方体都是k正则偶图
由书本第9页,k方体有2^k个顶点
每个顶点可以用长度为k的二进制码来表示,
2个顶点连线当且仅当代表2个顶点的二进制码只有1位坐标不同.
如果我们划分k方体的2^k个顶点, 把坐标之和为偶数的顶点归入X, 否则归入Y.
显然, X中顶点互不邻接, Y中顶点互不邻接
所以k方体是偶图.
因为k方体的每个顶点度数为k
所以k方体是k正则偶图.
因为推论
所以k方体存在完美匹配

证法2:直接在k方体中找出完美匹配.
设k方体顶点二进制码为(x1, x2, …, xk), 我们取(0, x2, …, xk), 和(1, x2, …, xk) 之间的全体边所成之集为M
因为M中的边均不相邻接
所以构成k方体的匹配
因为|M|= 2 k − 1 2^{k−1} 2k1
所以M是完美匹配.

117习题1
K 2 n K_{2n} K2n的不同完美匹配个数 = (2n−1)!!

(2)归纳法
K 2 n K_{2n} K2n的任意一个顶点有2n−1种不同的方法被匹配
因为1条边2个点,1个顶点被匹配的同时,还有1个顶点被匹配
所以 K 2 n K_{2n} K2n的不同完美匹配个数 = (2n−1) K 2 n − 2 K_{2n−2} K2n2
如此推下去, 可以归纳出
K 2 n K_{2n} K2n的不同完美匹配个数 = (2n−1)!!

Kn,n的不同完美匹配个数 = n!

对于X中的第1个点,有n种不同的方法被匹配
对于X中的第2个点,就只剩下n-1种方法被匹配了
Kn,n的不同完美匹配个数 = n!

117习题2
树至多存在1个完美匹配

反证法
假设M1与M2是树T的2个不同的完美匹配
所以M1ΔM2≠Φ
如果M1和M2中的1个点所在的边一样(不一样)
那么M1ΔM2中该点的度=0(=2)
所以T[M1ΔM2]每个非空部分顶点度数为2
所以T[M1ΔM2]存在圈
所以T中有圈
与T是树矛盾

117习题4
K4有唯一的1因子分解

K4的不同1因子个数 = 3
K4的边数 = 6
K4的每个1因子的边数 = 3
K4的每个1因子分解的不同的1因子的个数=3
因为K4的不同1因子个数 = 3 = K4的每个1因子分解的不同的1因子的个数
所以K4有唯一的1因子分解

K 2 n K_{2n} K2n的不同完美匹配个数 = (2n−1)!!
K 2 n K_{2n} K2n的不同1因子个数 = (2n−1)!!

K 2 n K_{2n} K2n的1个完美匹配的边数=n
K 2 n K_{2n} K2n的1个1因子的边数=n

K 2 n K_{2n} K2n的边数=n(2n-1)
K 2 n K_{2n} K2n的1个1因子分解的边数=n(2n-1)

K 2 n K_{2n} K2n的每个1因子分解包含的不同的完美匹配的个数=(2n-1)
K 2 n K_{2n} K2n的每个1因子分解包含的不同的1因子的个数=(2n-1)

1因子分解包含的不同的1因子的个数=总边数 / 每个1因子的边数

118习题12
一棵树G有完美匹配当且仅当对所有顶点v∈V(G), 有: o(G−v)=1

“必要性”
若G有完美匹配, 由Tutte定理: o(G−v) ≤ 1
若树G有完美匹配, 则显然G为偶阶树, 于是o(G−v)≥1
所以o(G−v)=1
“充分性”
由于对任意点v∈V(G), 有o(G−v)=1.
设Cv是G−v的奇分支, 又设G中由v连到G−v的奇分支的边为vu
显然, 由u连到G−u的奇分支的边也是uv.
令M={e(v): 它是由v连到G−v的奇分支的边, v∈V(G) }
所以M是G的完美匹配
在这里插入图片描述

115标号法:在赋权完全偶图中,求具有最大权的完美匹配

简洁版

  1. 初始可行顶点标号l
  2. 相等子图Gl
    选取匹配M
    如果X是M饱和的,那么M是完美匹配,那么M是最优匹配
    如果X不是M饱和的,那么选取非饱和点u∈X,S={u},T=∅
  3. 如果在相等子图Gl中,T = NGl(S),那么计算αl,并更新可行顶点标号l。转上一步
    如果在相等子图Gl中,T是NGl(S)的子集,那么下一步
  4. NGl(S)\T中尽量选择一个饱和点y,取yz∈M,将z加入点集S,将y加入点集T。转上一步

000

  1. 对于赋权完全偶图的权值矩阵W,每一行代表点子集X中的一个点,每一列代表点子集Y中的一个点,
    给一初始可行顶点标号 l:每一行的标号为该行的最大值,每一列的标号为0
    可行顶点标号:权值矩阵中的一个元素 ≤ 该元素所在行和列的标号之和
  2. 相等子图 Gl
    如果权值矩阵中的一个元素 = 该元素所在行和列的标号之和,那么被选入边集El
    相等子图 Gl是具有边集El的G的生成子图
  3. 相等子图 Gl中任选一个边独立集或匹配M
    偶图的点覆盖 = 覆盖了所有非0元素的线
    偶图的匹配 = 权值矩阵W的任意两个非0元素都不在同一条线上的非0元素
  4. 若某一行上有匹配M中的非0元素,则该行对应一个M饱和的点
    若X是M饱和的,则M是完美匹配,也是最优匹配
    若X不是M饱和的,令u是一个M非饱和点,置S={u}, T= Φ
  5. 如果在相等子图 Gl中,T是点集S的邻域的子集,那么下一步
    如果在相等子图 Gl中,T = 点集S的邻域,那么计算
    αl = min(对于点集S中的x和不属于T中的y的行列标号之和 - 对应矩阵元素的权值)
    对于属于点集S的点集X中的点,其标号-αl
    对于属于点集T的点集Y中的点,其标号+αl
    得到新的可行顶点标号,重新开始
    在这里插入图片描述
  6. 在NGl(S)−T中选择点y
    若y是M饱和的且yz∈M, 则置S=S∪{z}, T=T∪{y},转5
    若y不是M饱和的,设P是Gl中M可扩路, 置M=MΔE§, 转4

该算法把匈牙利算法用于其中, 主要是用来判定和求完美匹配.
求一般的赋权偶图(非完全)的最大匹配, 将不存在的边权值为0的边代替后得到赋权完全偶图后即可用该算法.

6 平面图

平面图

121
设G=(n,m)是平面图, 则面的次数之和 = 2m

设G=(n,m)是连通平面图,φ是G的面数,则n-m+φ=2
设G是具有ࣘk个连通分支的平面图,φ是G的面数,则n-m+φ= k+1

平面图的必要条件
122
设G是具有n个点m条边ࣘφ个面的连通平面图
如果对G的每个面f有deg(f)≥l≥3, 则 m ≤ ( n − 2 ) l / ( l − 2 ) m≤(n-2)l/(l-2) m(n2)l/(l2)
取l=3有:
设G是具有n(n≥3)个点m条边ࣘ个面的简单平面图,则 m ≤ 3 n − 6 m≤3n-6 m3n6
取l=4有:
设G是具有n(n≥3)个点m条边ࣘ个面的简单平面偶图, 则 m ≤ 2 n − 4 m≤2n-4 m2n4

面的次数之和 = 2m①
n-m+φ=2②

设G是具有n个点m条边φ个面的连通平面图
若G的每个面均由长度是l 的圈围成,即 d e g ( f ) = l deg(f)=l deg(f)=l,则 m = ( n − 2 ) l / ( l − 2 ) m=(n-2)l/(l-2) m=(n2)l/(l2)

设G是具有n个点m条边的简单平面图, 则 δ≤5

反证法
假设δ≥6
握手①
m ≤ 3 n − 6 m≤3n-6 m3n6

一个简单连通平面图是2连通的, 当且仅当它的每个面的边界是圈

若一个平面图是2连通的, 则它的每条边恰在2个面的边界上

存在且只存在5种正多面体: 它们是正四、六、八、十二、二十面体

极大可平面图

设G是简单可平面图, 如果
(1) G是Ki (1 ≤ i ≤ 4); 或
(2) 在G的任意非邻接顶点间添加一条边后, 得到的图均是非可平面图
则称G是极大可平面图
极大可平面图的平面嵌入称为极大平面图

极大平面图一定连通
极大平面图G的n≥3, 则G无割边

设G是n阶(n≥3)简单平面图, 则下面命题等价:
(1) G是极大平面图
(2) G每个面的次数=3,即2m=3φ
(3) m=3n−6
(4) φ=2n−4

正四, 八, 二十面体均为极大平面图

极大外可平面图

若一个可平面图 G存在一种平面嵌入, 使其所有顶点均在某个面的边界上, 称该图为外可平面图
外可平面图的一种外平面嵌入, 称为外平面图

设G是一个简单外可平面图, 若在G中任意不邻接顶点间添上一条边后, G成为非外可平面图, 则称G是极大外可平面图
极大外可平面图的外平面嵌入, 称为极大外平面图

设G是一个连通简单外可平面图, 则在G中有1个度数≤2的顶点

归纳法(考虑G有割点或者G是2-连通的情形

设G是一个有n(n≥3)个点, 且所有点均在外部面上的极大外平面图, 则G有n−2个内部面

归纳法

设G是一个有n(n≥3)个点, 且所有点均在外部面上的外平面图, 则G是极大外平面图, 当且仅当其外部面的边界是圈, 内部面是三角形

对偶图

平面图G的对偶图必然连通

G是平面图, 则G的对偶图的对偶图≌G当且仅当G是连通的

图G是可平面的↔图G不含与K5和K3, 3同胚的子图

两个图G1与G2是同胚的, 如果 G 1 ≅ G 2 {G_1} \cong {G_2} G1G2, 或者通过反复剖分和内收缩后能够变成一对同构的图
图的平面性在同胚意义下不变

135
图G是可平面的↔图G不含与K5和K3, 3同胚的子图

给定图G, 去掉G中的自环, 用单边代替平行边而得到的图称为G的基础简单图
(1) 图G可平面↔图G的基础简单图可平面
(2) 图G可平面↔图G的每个块都可平面

图G的子式(minor)或次图是对G进行一系列的删点, 删边或者边收缩运算得到的基础简单图…
简单图G是可平面图↔K5和K3, 3不是它的minor.

判断是否为可平面图

  1. 取G的1个圈H1,求出圈H1的1个平面嵌入H1’。i=1
  2. 如果Hi已经包括了G的所有边,那么停止,此时Hi’是G的一个平面嵌入
    如果Hi还没有包括G的所有边,那么对于每条这样的边,有
    B=G[{Hi中没有,但是G中有的边}]
    F(B,Hi’)={B可以在Hi’中画入的面}
  3. 如果对于某一个B,其对应的F(B,Hi’)=∅,那么停止,G是不可平面图
    否则,选出|F(B,Hi’)|最小的B,取P∈B,f∈F(B,Hi’)
  4. H i + 1 = H i ∪ P H_{i+1}=H_i∪P Hi+1=HiP,并把P画在面f内,得到 H i + 1 ′ H_{i+1}' Hi+1
  5. i=i+1。转步骤2

习题

144习题11
设G是一个简单图, 若顶点数n≥11, 则G与G的补图中, 至少有一个是不可平面图

设G是一个n阶可平面图, 所以 m ( G ) ≤ 3 n − 6 m(G) \le 3n - 6 m(G)3n6
假设G与G的补图均为平面图, 则 m ( G ˉ ) ≤ 3 n − 6 m(\bar G) \le 3n - 6 m(Gˉ)3n6
所以 m ( G ˉ ) + m ( G ) ≤ 6 n − 12 m(\bar G) + m(G) \le 6n - 12 m(Gˉ)+m(G)6n12
因为 m ( G ˉ ) + m ( G ) = n ( n − 1 ) 2 m(\bar G) + m(G) = {{n(n - 1)} \over 2} m(Gˉ)+m(G)=2n(n1)
当n≥11时, 显然有 n ( n − 1 ) 2 > 6 n − 12 {{n(n - 1)} \over 2} > 6n - 12 2n(n1)>6n12,矛盾
因此G与G的补图中至少有一个是不可平面图

144习题14
设Gi是一个有ni个点, mi条边的图, i=1, 2.
证明: 若G1与G2同胚, 则: n 1 + m 2 = n 2 + m 1 {n_1} + {m_2} = {n_2} + {m_1} n1+m2=n2+m1

设G1经过p1次剖分, p2次2度顶点收缩得到H1,
G2经过q1次剖分, q2次2度顶点收缩得到H2,
使得: H 1 ≅ H 2 {H_1} \cong {H_2} H1H2
设H1与H2的顶点数分别为 n 1 ∗ {n_1}* n1 n 2 ∗ {n_2}* n2, 边数分别为 m 1 ∗ {m_1}* m1 m 2 ∗ {m_2}* m2
那么:
n 1 ∗ = n 1 + P 1 − P 2 {n_1}* = {n_1} + {P_1} - {P_2} n1=n1+P1P2
m 1 ∗ = m 1 + P 1 − P 2 {m_1}* = {m_1} + {P_1} - {P_2} m1=m1+P1P2
n 2 ∗ = n 2 + q 1 − q 2 {n_2}* = {n_2} + {q_1} - {q_2} n2=n2+q1q2
m 2 ∗ = m 2 + q 1 − q 2 {m_2}* = {m_2} + {q_1} - {q_2} m2=m2+q1q2
所以
n 1 + m 2 = n 1 ∗ + m 2 ∗ + P 1 − P 2 + q 1 − q 2 {n_1} + {m_2} = {n_1}* + {m_2}* + {P_1} - {P_2} + {q_1} - {q_2} n1+m2=n1+m2+P1P2+q1q2
n 2 + m 1 = n 2 ∗ + m 1 ∗ + P 1 − P 2 + q 1 − q 2 {n_2} + {m_1} = {n_2}* + {m_1}* + {P_1} - {P_2} + {q_1} - {q_2} n2+m1=n2+m1+P1P2+q1q2
因为 H 1 ≅ H 2 {H_1} \cong {H_2} H1H2
所以 m 1 ∗ = m 2 ∗ , n 1 ∗ = n 2 ∗ {m_1}* = {m_2}*,{n_1}* = {n_2}* m1=m2,n1=n2
所以 n 1 + m 2 = n 2 + m 1 {n_1} + {m_2} = {n_2} + {m_1} n1+m2=n2+m1

144习题16
每个5连通简单可平面图至少有12个顶点

设G是5连通图
所以G的点连通度≥5①
因为G的最小度≥G的点连通度②
2m=所有点的度的和③
所以2m=所有点的度的和≥G的最小度 * n≥5n
因为G是简单可平面图
所以m≤3n-6④
所以2.5n≤m≤3n-6
所以0≤m-2.5n≤0.5n-6
所以n≥12

144习题17
没有6连通的简单可平面图

假设G是6连通图
所以G的点连通度≥6①
因为G的最小度≥G的点连通度②
2m=所有点的度的和③
所以2m=所有点的度的和 ≥ G的最小度 * n ≥ G的点连通度 * n ≥ 6n
所以m ≥ 3n >3n-6
因为G是简单可平面图
所以m≤3n-6④
矛盾
所以没有6连通简单可平面图

144习题19
若G是连通平面图,且所有顶点度数≥3,
则G至少有一个面 f,使得deg(f)≤5

反证法
假设G的所有面的次数都≥6
因为2m=G的所有面的次数之和①
所以2m=G的所有面的次数之和≥6φ
因为n-m+φ=2②
所以6n-6m+6φ=12≤6n-4m
所以2m≤3n-6
因为δ(G)≥3
2m=所有点的度的和③
所以2m≥3n>3n-6
矛盾
所以G至少有一个面 f,使得deg(f)≤5

7 着色

边着色

简单图 χ ′ ( G ) = △ \chi' (G) = △ χ(G)= χ ′ ( G ) = △ + 1 \chi' (G) = △+1 χ(G)=+1

边色数 χ ′ ( G ) = △ \chi' (G) = △ χ(G)=

  1. 偶图(不一定是简单图) χ ′ ( G ) = △ \chi' (G) = △ χ(G)=
    比如:路、树
    完全偶图(是简单图) χ ′ ( K m , n ) = △ \chi' (K_{m,n}) = △ χ(Km,n)=
  2. 设G是简单图且Δ(G)>0。
    若G中只有1个最大度点恰有2个相邻的最大度点,则 χ ′ ( G ) = △ \chi' (G) = △ χ(G)=

边色数 χ ′ ( G ) = △ + 1 \chi' (G) = △+1 χ(G)=+1

  1. 设G是简单图。
    点数为奇数n=2k+1边数m>kΔ,则 χ ′ ( G ) = △ + 1 \chi' (G) = △+1 χ(G)=+1
    (反证法:假设 χ ′ ( G ) = △ \chi' (G) = △ χ(G)=,与边数m>kΔ矛盾)
  2. 设G是奇数阶Δ正则简单图
    若Δ>0,则 χ ′ ( G ) = △ + 1 \chi' (G) = △+1 χ(G)=+1
    (因为握手2m=nΔ=(2k+1)Δ>2kΔ,所以m>kΔ)
    比如:
    奇圈(是奇数阶Δ=2正则简单图)
    奇数阶完全图(是奇数阶Δ=(n-1)正则简单图)

求边色数的图中的边表示关联的关系

  1. 排课表:边表示某个老师教某个班
    边色数 = 每周需要的最少的课时数
    每天的课时数 = 每周需要的最少的课时数 / 每周上课的天数
    总边数 = 每周的课数
    教室数 = 每周的课数 / 每周的课时数
    = 每周的课数 / 每天的课时数 / 每周上课的天数

点着色

点色数 χ ( G ) ≤ △ + 1 \chi(G) ≤ △+1 χ(G)+1
最大度点和△个点相连,如果这△个点颜色各不相同,那么 χ ( G ) = △ + 1 \chi(G)= △+1 χ(G)=+1

若G是连通的简单图,并且它既不是奇圈,又不是完全图,则 χ ( G ) ≤ △ \chi(G) ≤ △ χ(G)
G是非空简单图,若最大度点互不相邻,则 χ ( G ) ≤ △ \chi(G) ≤ △ χ(G)

求点色数

  1. 如果找得到一个正常k着色,那么点色数≤k
  2. 如果找不到一个正常k着色,那么点色数>k
  3. 如果平面图,那么点色数≤5
  4. 证明点色数 ≥ k
    1. 如果子图有完全图,那么点色数 ≥ 完全图的点数
    2. 如果子图有偶圈,那么点色数 ≥ 2
    3. 如果子图有奇圈,那么点色数 ≥ 3
    4. 如果一个点和p个点邻接,那么点色数 ≥ 这p个点的颜色个数+1

着色方案

  1. 奇圈着色3种
  2. 和奇圈的每个点都邻接的点着色另一种
  3. 着色其它点

求点色数的图中的边表示冲突的关系

  1. 边表示边的2个端点代表的2门课程被某个学生同时选了
  2. 边表示边的2个端点代表的2个车道上的车不能同时安全地进入路口

不考!临界图

临界图:图G的真子图H, χ ( H ) ≤ χ ( G ) \chi(H) ≤ \chi(G) χ(H)χ(G)
k临界图色数=k
(1) k色图均有k临界子图;
(2) 每个临界图均为简单连通图;
(3) 若G是k临界图,则δ≥k-1

每个k色图至少有k个度≥k−1的顶点
每个k色图△≥k-1,即 χ ( G ) ≤ △ + 1 \chi(G) ≤ △+1 χ(G)+1

若图G的点色数=k,且G中不含有三角形,称G是一个不含三角形的k色图

对任意正整数k,存在不含三角形的k色图.

188习题22
临界图没有割点

反证法
假设k临界图G有割点v, 设G1, G2, …, Gr是G−v的分支
设第i个分支顶点集为Vi (1≤i≤r)
设Hi=G[Vi∪{v}], (1≤i≤r)
则Hi是k−1可正常点着色的,
现对每个Hi进行k−1正常点着色, 且v都分配同一种颜色,
那么, 将着色后的Hi合在一起, 得到G的k−1正常点着色方案,
这与G是k色图矛盾.
所以临界图没有割点

因为1色图空图,所以1临界图只能是点数最少的空图,即K1
因为2色图偶图,所以2临界图只能是点数最少的偶图,即K2
因为3色图必然含有奇圈,而奇圈的色数是3,所以3临界图只能是奇圈

不考!完美图:导出子图H满足 χ ( G ) = c l ( G ) \chi(G) = cl(G) χ(G)=cl(G)

简单图G的一个顶点子集S在G中的导出子图是完全图, 则称S是G的一个
简单图G的最大团包含的顶点数称为G的团数,记为cl(G)
点色数 ≥ 团数 χ ( G ) ≥ c l ( G ) \chi(G) ≥ cl(G) χ(G)cl(G)
如果G不含三角形,那么cl(G)≤2
完全图 χ ( G ) = c l ( G ) \chi(G) = cl(G) χ(G)=cl(G)

如果G的每个导出子图H满足 χ ( G ) = c l ( G ) \chi(G) = cl(G) χ(G)=cl(G),那么G是完美图
完全图和偶图是完美图
偶图的补图是完美图
不含三角形cl(G)≤2,含有奇圈 χ ( G ) ≥ 3 \chi(G) ≥ 3 χ(G)3的图不是完美图

设S是图G的顶点集合的一个划分
如果S的每个子集在G中的导出子图均是完全图, 称S是G的一个完全分类
G的最小完全分类所包含的元素个数称为G的完全数, 记为θ(G)

点独立数α(G) ≤ 完全数θ(G)

若对G中每个点导出子图H, 都有点独立数α(H) = 完全数θ(H),称G是关于点独立集的完美图
G是关于色数的完美图当且仅当G是关于独立集的完美图

G是完美图当且仅当其补图是完美图

图G是完美图当且仅当G和其补图均没有导出子图是长度≥5的奇圈
peterson图不是完美图

色多项式

P k ( G ) P_k(G) Pk(G)=对G正常k点着色的方式数

  1. 若点色数 χ ( G ) > k \chi(G) >k χ(G)k,则 P k ( G ) P_k(G) Pk(G)=0
    点色数 χ ( G ) \chi(G) χ(G)=可以正常k点着色的最小k值
  2. 空图 P k ( G ) = k n P_k(G)=k^n Pk(G)=kn每个点可以有k种点着色方式
  3. 完全图 P k ( K n ) = k … … ( k − n + 1 ) P_k(K_n)=k……(k-n+1) Pk(Kn)=k(kn+1)n项之积
  4. 有n个孤立点 P k ( G ) = k n P k ( G − n 个 孤 立 点 ) P_k(G)=k^nP_k(G-n个孤立点) Pk(G)=knPk(Gn)
  5. 有环或者重边,将其去掉, P k ( G ) P_k(G) Pk(G)不变

167
设G是简单图, e=uv是G的一条边, 且d(u)=1, 则 P k ( G ) = ( k − 1 ) P k ( G − u ) P_k(G)=(k-1)P_k(G-u) Pk(G)=(k1)Pk(Gu)

P k ( G ) P_k(G) Pk(G)=删边-缩边
删边代表2个点着色不同
缩边代表2个点着色相同

理想子图:每个分支都是完全图的图G的生成子图H
(2)ri=Ni(G)=具有i个分支的 每个分支都是完全图的图G的生成子图H 的个数
1≤i≤n
Nn-1(G)=m:生成子图H有1条边
Nn(G)=1:生成子图H是空图
(3)图G的伴随多项式 = 图G的t个分支的伴随多项式之积
在这里插入图片描述

n阶简单图G的色多项式 P k ( G ) P_k(G) Pk(G)是常数项为0的首1整系数多项式, 且各项系数符号正负相间
设G=(n, m)是简单图, 则在其色多项式 P k ( G ) P_k(G) Pk(G)中, k n − 1 k^{n−1} kn1的系数=−m

8 独立集 覆盖

点独立集是图G中互不相邻的点构成的点子集
图G中包含点数最多的点独立集称为图G的最大点独立集
最大点独立集包含的点数称为图G的点独立数,记为α(G)

点覆盖是图G的一个顶点子集K,使得图G的每条边至少有一个端点在顶点子集K中
图G中包含点数最少的点覆盖称为G的最小点覆盖
最小点覆盖包含的点数,称为G的点覆盖数,记为β(G)

α(G)+β(G) = n

边独立集匹配是图G中互不邻接的边构成的边子集
图G中包含边数最多的边独立集称为G的最大边独立集
最大边独立集包含的边数,称为G的边独立数,记为α’(G)

边覆盖是图G的一个边子集L,使得G中的每个顶点均是L中某条边的端点
图G中包含边数最少的边覆盖称为G的最小边覆盖
最小边覆盖包含的边数,称为G的边覆盖数,记为β’(G)

α’(G)+β’(G) = n

104
矩阵的一行或一列称为矩阵的一条线
证明: 布尔矩阵中, 包含了所有“1”的线的最少数目(line rank), 等于具有性质“任意两个1都不在同一条线上的1的最大数目”
证明: 设布尔阵是n行m列矩阵, 把它模型为一个偶图(二部邻接矩阵):
每行每列分别用一个点表示, X表示行点集合, Y表示列点集合, 两点连线当且仅当该行该列元为1.
偶图的最小点覆盖包含的点数 = 覆盖了所有“1”的线的最少数目
偶图的最大匹配包含的边数 = 任意两个1都不在同一条线上的1的最大数目

有向图

  1. 强连通图
    若D的中任意两点是双向连通的, 称D是强连通图
  2. 单向连通图
    若D的中任意两点是单向连通的, 称D是单向连通图
  3. 弱连通图
    若D的基础图是连通的, 称D是弱连通图

强连通图→单向连通图→弱连通图

有向图的每个点位于并仅位于1个强连通分支
有向图的每个点位于并仅位于1个弱连通分支

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzz的学习笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值