机器学习系列|基于随机森林的生存分析模型-R实战

本文介绍了随机生存森林模型在生存分析中的应用,通过R语言实现案例,展示模型构建流程和评估指标。随机生存森林具有预测准确度高、不受比例风险假定限制等优点,但也易受离群值影响。它可与传统生存分析方法如Cox比例风险回归模型结合使用。
摘要由CSDN通过智能技术生成

机器学习系列|基于随机森林的生存分析模型-R实战

图片

随机生存森林

随机生存森林通过训练大量生存树,以表决的形式,从个体树之中加权选举出最终的预测结果。

构建随机生存森林的一般流程为:

Ⅰ. 模型通过“自助法”(Bootstrap)将原始数据以有放回的形式随机抽取样本,建立样本子集,并将每个样本中37%的数据作为袋外数据(Out-of-Bag Data)排除在外;

Ⅱ. 对每一个样本随机选择特征构建其对应的生存树;

Ⅲ. 利用Nelson-Aalen法估计随机生存森林模型的总累积风险;

Ⅳ. 使用袋外数据计算模型准确度。

案 例

以美国梅奥诊所在1974—1984年间收集的原发性胆汁性胆管炎(primarybiliarycholangitis,PBC)数据为例,通过构建随机生存森林模型来探究D-青霉胺(DPCA)治疗对于原发性胆汁性胆管炎生存的影响。同时,也探讨其他主要临床指标是否也对PBC的生存有影响。原始数据共有总计418例患有PBC的研究对象,其中时间(time)的单位为生存天数,在此换算为生存年数。由于只考虑单次复发的情况,原始数据“status”变量中的事件重新分组为“0”(删失ÿ

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值