初认联邦学习—背景和框架介绍

联邦学习是一种在不披露底层数据和保持数据隐私的前提下,让各方共同建模和提升AI效果的技术。它解决了数据孤岛和隐私保护的问题,如在车险定价、信贷风控、智慧安防和辅助诊断等领域有广泛应用。主要分为纵向、横向和迁移联邦学习,其中FATE和TensorFlow Federated是两个重要的开源框架。
摘要由CSDN通过智能技术生成

1 背景介绍

1.1 人工智能的遇到的困境

(1)数据孤岛问题。一个AI项目可能涉及多个领域,需要融合各个公司、各个部门的数据。(比如研究居民线上消费问题,需要各个消费平台的数据,可能还需要银行数据等等)但在现实中想要将分散在各地、各个机构的数据进行整合几乎是不可能的。

(2)数据隐私问题。GDPR的出台,使得各方对数据所有权和隐私性的关注越来越多,对用户隐私和安全管理日趋严格,拿不到赖以生存的数据集
GDPR:2018年欧洲联盟出台《通用数据保护条例》。旨在保护用户的个人隐私和数据安全。用户可以删除或撤回其个人数据 没有用户的允许,公司的不可以有其它用途。违反该法案的公司将面临高额罚款。

1.2数据隐私保护可解决方案

(1)要解决大数据的困境,仅仅靠传统的方法已经出现瓶颈。两个公司简单的交换数据,法规、GDPR都是不允许的;用户是原始数据的拥有者,在用户没有批准的情况下,公司间不能交换数据。

(2)如何在满足隐私监管要求的前提下,设计一个机器学习框架。让数据拥有方不暴露自己的数据,但能共同使用数据,。让人工智能系统能够更加高效、准确地共同使用各自的数据,解决数据孤岛的问题。因此,一个满足隐私保护和数据安全的一个可行的解决方案就诞生了 ,即 联邦学习。

2 联邦学习简介

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值