1.非线性系统分类
- 非本质非线性:光滑连续的部分可以局部线性化(如光滑连续曲线可以取某工作点的切线代替),是非线性数学模型线性化研究的对象
- 本质非线性:工作曲线不光滑,甚至不连续,无法线性化 本质非线性具有以下特性:
(1)饱和特性(理想运算放大器)
(2)死区特性(3)继电器特性
(4)回环特性
2.线性化条件
- 系统有一个固定的工作点
- 系统正常工作时偏离工作点很小
- 给定的区间内,变量的各阶导数存在(用切线去代替曲线是将输入输出表达式展开成泰勒级数,就要求变量各阶导数存在)
(1)单输入单输出
对于非线性系统,输入x(t),输出y=f(x),给定工作点y0=f(x)处各阶导数都存在,在y=f(x0)附近展开成泰勒级数:
y = f ( x 0 ) + [ d f ( x ) d x ] x 0 ( x − x 0 ) + 1 2 ! [ d 2 f ( x ) d x 2 ] x 0 ( x − x 0 ) 2 + … … y=f(x_0)+[\frac{df(x)}{dx}]_{x_0}(x-x_0)+\frac 1{2!}[\frac{d^2f(x)}{dx^2}]_{x_0}(x-x_0)^2+…… y=f(x0)+[dxdf(x)]x0(x−x0)+2!1[dx2d2f(x)]x0(x−x0)2+……
忽略二次以上项,有
y = f ( x 0 ) + [ d f ( x ) d x ] x 0 ( x − x 0 ) y=f(x_0)+[\frac{df(x)}{dx}]_{x_0}(x-x_0) y=f(x0)+[dxdf(x)]x0(x−x0)
Δ y = [ d f ( x ) d x ] x 0 Δ x \Delta y=[\frac{df(x)}{dx}]_{x_0}\Delta x Δy=[dxdf(x)]x0Δx
几何含义:用切线代替曲线,曲率越小(曲线越直),在很大的范围内误差Δy都比较小,偏差Δx取值范围越大。
(2)两个输入一个输出
输入x1(t),x2(t),输出y=f(x),工作点y0=f(x10,x20)
展开成泰勒级数,并忽略二次项:
y = f ( x 10 , x 20 ) + ( ∂ f ∂ x 1 ) x 10 ( x − x 10 ) + ( ∂ f ∂ x 2 ) x 20 ( x − x 20 ) y=f(x_{10},x_{20})+(\frac{\partial f}{\partial x_1})_{x_{10}}(x-x_{10})+(\frac{\partial f}{\partial x_2})_{x_{20}}(x-x_{20}) y=f(x10,x20)+(∂x1∂f)x10(x−x10)+(∂x2∂f)x20(x−x20)
Δ y = k 1 Δ x 1 + k 2 Δ x 2 \Delta y=k_1\Delta x_1+k_2\Delta x_2 Δy=k1Δx1+k2Δx2 - 注意:
(1)只适用于不太严重的非线性系统(曲线曲率比较小),其非线性函数是可以利用泰勒级数展开的(非本质非线性)
(2)实际运行情况是在某个平衡点(即静态工作点)附近,且变量只能在小范围内变化。
(3)不同静态工作点得到的方程是不同的
(4)对于严重的非线性如继电器特性,因处处不满足泰勒级数展开的条件,故不能作线性化处理