控制系统分析与设计(四):典型环节的数学模型


具有相同动态特性或者说具有相同传递函数的所有不同物理结构、不同工作原理的元器件,被认为是同一环节,即环节是按动态特性对控制系统各部分进行分类的。应用环节的概念,则物理结构上千差万别的控制系统都是由为数不多的某些环节组成的。典型环节归纳如下:

1.比例环节(放大环节)

输出以一定比例复现输入
y ( t ) = K u ( t ) y(t)=Ku(t) y(t)=Ku(t)
G ( s ) = Y ( s ) U ( s ) = K G(s)=\frac{Y(s)}{U(s)}=K G(s)=U(s)Y(s)=K

2.惯性环节

τ d d t y ( t ) + y ( t ) = K u ( t ) \tau \frac{d}{dt}y(t)+y(t)=Ku(t) τdtdy(t)+y(t)=Ku(t)
G ( s ) = Y ( s ) U ( s ) = K τ s + 1 G(s)=\frac {Y(s)}{U(s)}=\frac {K}{\tau s+1} G(s)=U(s)Y(s)=τs+1K
其中 τ − 时 间 常 数 , K − 比 例 系 数 \tau -时间常数,K-比例系数 τK
惯性环节输出量不能立即跟随输入量的变化,存在时间上的延迟,可以用τ来度量。

  • 惯性环节的阶跃响应:令u(t)=1(t)
    U ( s ) = 1 s U(s)=\frac 1{s} U(s)=s1
    Y ( s ) = U ( s ) G ( s ) = 1 s ∗ K τ s + 1 Y(s)=U(s)G(s)=\frac 1{s}*\frac K{\tau s+1} Y(s)=U(s)G(s)=s1τs+1K
    且已知 L [ 1 ( t ) ] = 1 s , L [ e − α t ] = 1 s + α L[1(t)]=\frac 1{s},L[e^{-\alpha t}]=\frac 1{s+\alpha} L[1(t)]=s1,L[eαt]=s+α1
    则将上式分解成两项之和为
    Y ( s ) = 1 s ∗ K τ s + 1 = A s + B s + 1 τ Y(s)=\frac 1{s}*\frac K{\tau s+1}=\frac A{s}+\frac B{s+\frac 1{\tau}} Y(s)=s1τs+1K=sA+s+τ1B

    A = s Y ( s ) ∣ s = 0 = K τ s + 1 ∣ s = 0 = K \left.A=sY(s) \right| _{s=0} =\left.\frac K{\tau s+1} \right| _{s=0}=K A=sY(s)s=0=τs+1Ks=0=K
    B = ( s + 1 τ ) Y ( s ) ∣ s = − 1 τ = K τ s ∣ s = − 1 τ = − K \left.B=(s+\frac 1{\tau})Y(s) \right| _{s=-\frac 1{\tau}}=\left.\frac{K}{\tau s} \right| _{s=-\frac 1{\tau}}=-K B=(s+τ1)Y(s)s=τ1=τsKs=τ1=K

    Y ( s ) = K ( 1 s − 1 s + 1 τ ) Y(s)=K(\frac 1{s}-\frac 1{s+\frac 1{\tau}}) Y(s)=K(s1s+τ11)
    再作拉氏反变换得
    y ( t ) = L − 1 [ Y ( s ) ] = K ( 1 − e − t τ ) y(t)=L^{-1}[Y(s)]=K(1-e^{-\frac t{\tau}}) y(t)=L1[Y(s)]=K(1eτt)
    在这里插入图片描述

3.积分环节

d d t y ( t ) = K u ( t ) 或 y ( t ) = K ∫ u ( t ) d t \frac {d}{dt}y(t)=Ku(t) 或 y(t)=K \int u(t)dt dtdy(t)=Ku(t)y(t)=Ku(t)dt
作拉氏变换得
s Y ( s ) = K U ( s ) sY(s)=KU(s) sY(s)=KU(s)
G ( s ) = Y ( s ) U ( s ) = K s = 1 T s ( 有 时 令 K = 1 T ) G(s)=\frac{Y(s)}{U(s)}=\frac {K}{s}=\frac 1{Ts}(有时令K=\frac 1{T}) G(s)=U(s)Y(s)=sK=Ts1K=T1
K-比例系数,T-积分时间常数

  • 积分环节的阶跃响应:令u(t)=1(t),
    U ( s ) = 1 s U(s)=\frac 1{s} U(s)=s1
    Y ( s ) = U ( s ) G ( s ) = K s 2 Y(s)=U(s)G(s)=\frac K{s^2} Y(s)=U(s)G(s)=s2K
    y ( t ) = L − 1 [ Y ( s ) ] = K t y(t)=L^{-1}[Y(s)]=Kt y(t)=L1[Y(s)]=Kt
    在这里插入图片描述

4.微分环节

c ( t ) = τ d d t r ( t ) c(t)=\tau \frac{d}{dt}r(t) c(t)=τdtdr(t)
τ - 时间常数,
G ( s ) = C ( s ) R ( s ) = τ s G(s)=\frac{C(s)}{R(s)}=\tau s G(s)=R(s)C(s)=τs
纯微分环节:
G ( s ) = τ s G(s)=\tau s G(s)=τs
一阶微分环节:
G ( s ) = τ s + 1 G(s)=\tau s+1 G(s)=τs+1
二阶微分环节:
G ( s ) = τ 2 s 2 + 2 ζ τ s + 1 , ( 0 < ζ < 1 ) G(s)=\tau^2s^2+2\zeta \tau s+1 , (0<\zeta<1) G(s)=τ2s2+2ζτs+1(0<ζ<1)

  • 微分环节的阶跃响应:令r(t)=1(t)
    R ( s ) = 1 s R(s)=\frac 1{s} R(s)=s1
    G ( s ) = τ s G(s)=\tau s G(s)=τs
    C ( s ) = τ C(s)=\tau C(s)=τ

    c ( t ) = τ δ ( t ) c(t)=\tau \delta(t) c(t)=τδ(t)
    注:δ(t)是脉冲函数,δ(0)=∞,δ(t!=0)=0,在整个时间轴上的积分是1
  • 微分环节实例
    ①RC串联电路
    在这里插入图片描述
    Y ( s ) = R R + 1 C s U ( s ) = R C s R C s + 1 U ( s ) Y(s)=\frac R{R+\frac 1{Cs}}U(s)=\frac{RCs}{RCs+1}U(s) Y(s)=R+Cs1RU(s)=RCs+1RCsU(s)
    G ( s ) = Y ( s ) U ( s ) = T s T s + 1 G(s)=\frac{Y(s)}{U(s)}=\frac{Ts}{Ts+1} G(s)=U(s)Y(s)=Ts+1Ts
    其中T=RC - 时间常数
    在这里插入图片描述
    ②实际的比例微分电路
    在这里插入图片描述
    U o ( s ) = R 2 Z + R 2 U i ( s ) U_o(s)=\frac{R_2}{Z+R_2}U_i(s) Uo(s)=Z+R2R2Ui(s)
    其中 Z = R 1 1 C s R 1 + 1 C s = R 1 R 1 C s + 1 Z=\frac{R_1 \frac 1{Cs}}{R_1+\frac 1{Cs}}=\frac{R_1}{R_1Cs+1} Z=R1+Cs1R1Cs1=R1Cs+1R1
    G ( s ) = U o ( s ) U i ( s ) = α ( T s + 1 α T s + 1 ) G(s)=\frac{U_o(s)}{U_i(s)}=\alpha(\frac{Ts+1}{\alpha Ts+1}) G(s)=Ui(s)Uo(s)=α(αTs+1Ts+1)
    其中
    T = R 1 C , α = R 2 R 1 + R 2 T=R_1C,\alpha = \frac {R_2}{R_1+R_2} T=R1C,α=R1+R2R2
    在这里插入图片描述

5.振荡环节

弹簧阻尼系统的传递函数:
G ( s ) = 1 m s 2 + f s + k G(s)=\frac 1{ms^2+fs+k} G(s)=ms2+fs+k1
RLC电路的传递函数:
G ( s ) = 1 L C s 2 + R C s + 1 G(s)=\frac{1}{LCs^2+RCs+1} G(s)=LCs2+RCs+11
振荡环节的微分方程:
τ 2 d 2 d t 2 y ( t ) + 2 ζ τ d d t y ( t ) + y ( t ) = K u ( t ) \tau^2\frac{d^2}{dt^2}y(t)+2\zeta\tau\frac{d}{dt}y(t)+y(t)=Ku(t) τ2dt2d2y(t)+2ζτdtdy(t)+y(t)=Ku(t)
则其传递函数为:
G ( s ) = Y ( s ) U ( s ) = K τ 2 s 2 + 2 ζ τ s + 1 ( 时 间 常 数 形 式 , 常 数 项 是 1 ) G(s)=\frac{Y(s)}{U(s)}=\frac K{\tau^2s^2+2\zeta\tau s+1}(时间常数形式,常数项是1) G(s)=U(s)Y(s)=τ2s2+2ζτs+1K,1
G ( s ) = Y ( s ) X ( s ) = K ω n 2 s 2 + 2 ζ ω n s + ω n 2 ( 零 极 点 形 式 , s 2 系 数 是 1 ) G(s)=\frac{Y(s)}{X(s)}=\frac{K\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}(零极点形式,s^2 系数是1) G(s)=X(s)Y(s)=s2+2ζωns+ωn2Kωn2s21
其中
无 阻 尼 自 然 振 荡 频 率 ω n = 1 τ 无阻尼自然振荡频率ω_n=\frac 1{\tau} ωn=τ1
阻 尼 自 然 振 荡 频 率 ω d = ω n 1 − ζ 2 阻尼自然振荡频率ω_d=ω_n\sqrt{1-\zeta^2} ωd=ωn1ζ2
ζ为阻尼系数、阻尼比

  • 振荡环节的阶跃响应:令0<ζ<1,K=1,r(t)=1(t),

R ( s ) = 1 s R(s)=\frac 1{s} R(s)=s1
G ( s ) = K ω n 2 s 2 + 2 ζ ω n s + ω n 2 G(s)=\frac{K\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2} G(s)=s2+2ζωns+ωn2Kωn2
C ( s ) = ω n 2 s ( s 2 + 2 ζ ω n s + ω n 2 ) C(s)=\frac{\omega_n^2}{s(s^2+2\zeta\omega_ns+\omega_n^2)} C(s)=s(s2+2ζωns+ωn2)ωn2
类似惯性环节的阶跃响应,需要对分式分母作因式分解,令:
s 2 + 2 ζ ω n s + ω n 2 = 0 s^2+2\zeta \omega_ns+\omega_n^2=0 s2+2ζωns+ωn2=0
则复数
s = − ζ ω n ± ζ 2 − 1 ω n s=-\zeta\omega_n \pm \sqrt{\zeta^2-1}\omega_n s=ζωn±ζ21 ωn
s = − ζ ω n ± j 1 − ζ 2 ω n = − ζ ω n ± j ω d s=-\zeta\omega_n \pm j\sqrt{1-\zeta^2}\omega_n=-\zeta\omega_n \pm j\omega_d s=ζωn±j1ζ2 ωn=ζωn±jωd
C ( s ) = ω n 2 s ( s + ζ ω n + j ω d ) ( s + ζ ω n − j ω d ) C(s)=\frac{\omega_n^2}{s(s+\zeta\omega_n+j\omega_d)(s+\zeta\omega_n-j\omega_d)} C(s)=s(s+ζωn+jωd)(s+ζωnjωd)ωn2
可化成以下两种形式:
①套用L[e-αtsinωt]、L[e-αtcosωt]
C ( s ) = ω n 2 s [ ( s + ζ ω n ) 2 + ω d 2 ] = A s + B ( s + ζ ω n ) ( s + ζ ω n ) 2 + ω d 2 + C ω d ( s + ζ ω n ) 2 + ω d 2 C(s)=\frac{\omega_n^2}{s[(s+\zeta\omega_n)^2+\omega_d^2]}=\frac{A}{s}+\frac{B(s+\zeta\omega_n)}{(s+\zeta\omega_n)^2+\omega_d^2}+\frac{C\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} C(s)=s[(s+ζωn)2+ωd2]ωn2=sA+(s+ζωn)2+ωd2B(s+ζωn)+(s+ζωn)2+ωd2Cωd
C ( s ) = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ω d 2 − ζ ω n ω d ω d ( s + ζ ω n ) 2 + ω d 2 C(s)=\frac 1{s}-\frac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}-\frac{\zeta\omega_n}{\omega_d}\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} C(s)=s1(s+ζωn)2+ωd2s+ζωnωdζωn(s+ζωn)2+ωd2ωd
c ( t ) = 1 − e − ζ ω n t c o s ω d t − ζ ω n ω d e − ζ ω n t s i n ω d t = 1 − e − ζ ω n t ( c o s ω d t + ζ 1 − ζ 2 s i n ω d t ) = 1 − e − ζ ω n t 1 − ζ 2 ( 1 − ζ 2 c o s ω d t + ζ s i n ω d t ) = 1 − e − ζ ω n t 1 − ζ 2 s i n ( ω d t + ϕ ) c(t)=1-e^{-\zeta\omega_nt} cos\omega_dt-\frac{\zeta\omega_n}{\omega_d}e^{-\zeta\omega_nt}sin\omega_dt =1-e^{-\zeta\omega_nt}(cos\omega_dt+{\frac{\zeta}{\sqrt{1-\zeta^2}}sin\omega_dt}) =1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}(\sqrt{1-\zeta^2}cos\omega_dt+\zeta sin\omega_dt) =1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}sin(\omega_dt+\phi) c(t)=1eζωntcosωdtωdζωneζωntsinωdt=1eζωnt(cosωdt+1ζ2 ζsinωdt)=11ζ2 eζωnt(1ζ2 cosωdt+ζsinωdt)=11ζ2 eζωntsin(ωdt+ϕ)
ϕ = a r c t g 1 − ζ 2 ζ \phi=arctg\frac{\sqrt{1-\zeta^2}}{\zeta} ϕ=arctgζ1ζ2
②套用L[1(t)],L[e-αt],用留数的方法求
C ( s ) = A s + B s + ζ ω n + j ω d + C s + ζ ω n − j ω d C(s)=\frac{A}{s}+\frac{B}{s+\zeta\omega_n+j\omega_d}+\frac{C}{s+\zeta\omega_n-j\omega_d} C(s)=sA+s+ζωn+jωdB+s+ζωnjωdC

在这里插入图片描述

6.纯滞后环节

输出信号比输入信号滞后一段时间
c ( t ) = r ( t − τ ) c(t)=r(t-\tau) c(t)=r(tτ)
其中τ - 滞后时间常数,作拉氏变换:
C ( s ) = ∫ 0 ∞ r ( t − τ ) e − s t d t C(s)=\int_0 ^ \infty {r(t-\tau)e^{-st}}dt C(s)=0r(tτ)estdt令t-τ=ζ,则
C ( s ) = ∫ 0 ∞ r ( ζ ) e − s ( ζ + τ ) d ζ = e − τ s ∫ 0 ∞ r ( ζ ) e − s ζ d ζ = e − τ s R ( s ) C(s)=\int_0^\infty {r(\zeta)e^{-s(\zeta+\tau)}d\zeta}=e^{-\tau s}\int_0^\infty{r(\zeta)e^{-s\zeta}}d\zeta=e^{-\tau s}R(s) C(s)=0r(ζ)es(ζ+τ)dζ=eτs0r(ζ)esζdζ=eτsR(s)
G ( s ) = C ( s ) R ( s ) = e − τ s G(s)=\frac{C(s)}{R(s)}=e^{-\tau s} G(s)=R(s)C(s)=eτs

  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值