automatic differentiation自动微分

higher-order derivatives 高阶导数

import tensorflow as tf

'''
使用tf.GradientTape()记录梯度,含有两个参数,默认persistent = False, watch_accessed_variables = True, 
persistent = False的话那么梯度就只能计算一次,因为计算一次后梯度就会被释放掉,如果像计算多次,那么一定要使persistent为True。
watch_accessed_varibles = True的话就可以看到所有变量(x = tf.Variable(3.0),这样定义的),相当于watch了所有变量,如果设置为False的话那么要求那个变量的导师就需要watch哪个变量

但是在一般情况下为了保证能找到梯度,要求那个变量的梯度就一定要watch它,不管他是constant还是Variable.
'''

#定义函数,对哪个变量求导就watch()哪一个变量
x = tf.constant(3.0)	#注意求导的一定是float类型,不能是int类型

with tf.GradientTape(persistent = True) as g:
	g.watch(x)
  	y = x ** 2
    z = x ** 2
dy_dx = g.gradient(y, x)
dz_dx = g.gradient(z, x)
print(dy_dx, dz_dx)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值