数据分析/运营——用户分层模型RFM


前言

本文介绍一种常见的用户分层模型:RFM模型

一、RFM模型介绍

RFMRencency(最近一次消费)Frequency(消费频率)Monetary消费金额)三个指标首字母组合,是衡量当前用户价值和进行用户分层的重要工具

(1)Rencency:最近一次消费是指客户在平台最近一次消费和当前的时间间隔,理论上R越小的客户是价值越高的客户
(2)Frequency:消费频率是指客户在固定时间内的购买次数
(3)Monetary:消费金额是指一段时间内的消费金额

二、使用RFM模型进行用户分类

(1)根据需求,获取RFM三个维度的历史数据
(2)确定RFM三个维度的中值(业务理解、整体数据中值、二八法则)
(3)根据RFM和中值,对用户进行分层
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值