数据分析/运营——数据异常的排查方法


前言

如果老板问你最近日活量(或者其他指标)出现下降/异常,是什么原因?
数据异常主要从两个大方向进行排查:①数据是否有问题?②业务是否有问题?
针对这两个方向,可以将数据异常排查分为以下几个步骤:

一、数据是否有问题,即数据是否是真的异常?

(1)亲自查看数据准确性,不要人云亦云
(2)时间轴拉长,看是近期异常(3个月)还是历史异常
(3)看和该指标关联的其他指标或其他核心指标是否也异常
(4)找到一个关键任务(产品/数据),提前沟通一下

二、如果数据是真的异常,怎么排查?

在分析异常原因时,最好先将用户进行拆分,常见的几个拆分维度
(1)按注册时间:新用户/老用户
(2)按登陆平台:iOS/安卓
(3)按新旧版本:新版本/旧版本
(4)按时间:淡季旺季、日间和夜间、周期性产品
将用户进行细分后,再分别对每一个维度进行原因排查,最大概率法归类(找出所有的可能,讲它们出现的概率进行排序)
(1)假期效应:开学季、暑期、四大节、当地节日
(2)热点事件:常规热点和世界杯、突发热点某爆款IP
(3)活动影响:双11、618、公司层面活动
(4)政策影响:互联网金融监管、快递行业实名
(5)底层系统故障:数据传输、存储、清洗有无问题
(6)统计口径:业务逻辑更改、指标计算方式更改

三、针对步骤二发现的异常原因进行验证

(1)凡事用数据说话,即便是有时候觉得异常原因很符合我们的直觉,但是如果有条件的话,还是希望能够进行一下ABtest、假设检验,用数据验证你的假设。

四、案例分析

以下是一个案例分析:

总结

先检查数据是否真的异常,如果是,那么将用户进行细分,分别找出每一部分用户最可能的异常原因,最后使用数据对这些原因进行验证。**

### 大型数据库表的数据清洗方法最佳实践 #### 使用批量处理减少锁争用和提高性能 对于大型数据库中的数据清洗操作,建议采用分批处理的方式。这不仅能够降低长时间锁定大量记录的风险,还能有效提升整体作业效率[^1]。 ```sql BEGIN TRANSACTION; FOR i IN (SELECT * FROM large_table WHERE condition ORDER BY id FETCH FIRST 1000 ROWS ONLY) LOOP UPDATE large_table SET column_name = cleaned_value WHERE current OF i; END LOOP; COMMIT; ``` #### 实施索引优化策略加速查询速度 创建合适的索引可以显著加快涉及条件筛选、连接等复杂运算的速度。然而,在设计阶段应谨慎考虑哪些字段适合建立索引以及可能带来的维护成本增加问题。 #### 定期备份并测试恢复机制确保安全性 任何重要的变更前都应当做好充分准备——即先做完整的数据库备份工作,并验证能否顺利还原至先前状态。这对于防止意外发生时能迅速恢复正常运营至关重要。 #### 验证数据一致性完整性约束 利用PL/SQL编写存储过程来定期检查业务逻辑层面的数据规则是否被遵循,比如外键关系是否存在异常断链情况;同时也可以通过触发器实现更细粒度控制,阻止非法输入进入系统。 #### 自动化日志记录便于追踪错误源头 每当执行一次大规模更新动作之后,都应该配套相应的审计功能,自动捕获修改前后差异信息存入专门的日志文件里保存起来供后续分析排查之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值