Chapter 6 CMOS组合逻辑门设计
- 深入讨论CMOS逻辑系列——静态和动态、传输晶体管、无比和有比逻辑
- 优化逻辑门的面积、速度、能量或稳定性
- 低功耗高性能的电路设计技术
6.1 引言
门电路从高层次上分为组合逻辑电路(非再生电路)和时序电路(再生电路):
- Combinational logic circuits:假设有足够的时间使逻辑门稳定下来,在任何时刻电路输出与其当前输入信号间的关系服从某个布尔表达式,而不存在任何从输出返回至输入的连接。
- Sequential logic circuits: 输出不仅取决于当前的输入值,也取决于原先的输入值。换言之,一个时序电路能记住改系统过去的一些历史,即它具有记忆功能。可以通过把一个或多个输出连回到某些输入来实现。
评价指标: 面积、速度、能量和功率 (和Chapter5的反相器一样,因为CMOS反相器是最简单的组合逻辑门,由反相器可以延申至任意数字门)
CMOS组合逻辑门分类 | Advantage | Disvantage | |
---|---|---|---|
静态组合逻辑电路 | 互补CMOS | 全逻辑摆幅,输出与器件尺寸无关,高噪声容限 | MOS管所需数目最多2N |
有比逻辑 | MOS管所需数目为N+1 | 输出与器件尺寸有关, | |
传输管逻辑 | 将MOS管的栅和源漏都作为逻辑输入 | 静态功耗 | |
动态组合逻辑电路 | 动态CMOS |
6.2 静态CMOS设计
基本优点:良好的稳定性(即对噪声的灵敏度低)、良好的性能以及低功耗(没有静态功耗)——可以参考CMOS反相器
-
At every point in time(except during the switching transients) each gate output is connected to either VDD or Vss via a low-resistive path.
-
The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).
-
This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.
6.2.1 互补CMOS
concept: 静态CMOS门是上拉网络(PUN)和下拉网络(PDN)的组合,如图Fig6.2
- 图中,F是由N个输入逻辑变量构成的逻辑函数,F由2N个MOS管实现(PUN-N个pmos, PDN-N个noms)。
- PUN的作用:每当逻辑门的输出意味着逻辑1时(取决于输入)它将提供一条在输出和VDD 之间的通路。
- PDN的作用:每当逻辑门的输出意味着逻辑0时把输出连至VSS。
- PUN和PDN网络是以相互排斥的方式构成的,即在稳定状态时两个网络中有且仅有一个导通。这样,一旦瞬态过程完成,总有一条路径存在于VDD 和输出端F之间(即高电平输出"1")或存在于VSS 和输出端F之间(即低电平输出"0")。这就是说,在稳定状态时输出结点总是一个低阻结点。
Designer在构成PUN和PDN网络时需要记住的规则:
- MOS管可以等效为一个由其G端的输入信号控制的开关。当输入信号Ini 为高时,对应的PUN中的NMOSi 开关闭合导通;当输入信号为低时,对应的PUN中的PMOSi 开关闭合导通。也即,PDN实现的是正逻辑,PUN实现的是反逻辑。
- PUN由PMOS构成,而PDN由NMOS构成。For Threshold Drops, PMOS传强"1"弱"0",而NOMS传强"0"弱"1"。
- 这一互补门在本质上是反相的,只能实现如NAND、NOR及XNOR这样的功能。用单独以及来实现非反相的布尔函数(如AND、OR或XOR)是不可能的,因此要求增加额外以及反相器。
- 通过给定的逻辑函数F设计静态互补CMOS的步骤:
- 先将逻辑表达式整体化成非的形式。如果不是,则整体取两次反,内层的一级反根据De Morgan定律化简开。
- 对于PDN,因为最终是把输出拉至GND,所以对于NOMS,安装串联为与,并联为或的形式进行连接布局。
- 对于PUN,因为对于每个们实际上实现的是反逻辑,则把逻辑表达式化成单个变量都是非的形式,也按照串联为与,并联为或的形式进行连接布局。
- 附:因为PUN和PDN实际互为对偶网络