概率机器人笔记(2):贝叶斯滤波(递归状态估计)

1.没有控制输入的状态估计

公式推导:
已知贝叶斯公式:
P ( x ∣ y ) = P ( y ∣ x ) P ( x ) P ( y ) P(x|y)=\frac{P(y|x)P(x)}{P(y)} P(xy)=P(y)P(yx)P(x)
添加了随机变量 z z z这个条件之后的贝叶斯公式:
P ( x ∣ y , z ) = P ( y ∣ x , z ) P ( x ∣ z ) P ( y ∣ z ) P(x|y,z)=\frac{P(y|x,z)P(x|z)}{P(y|z)} P(xy,z)=P(yz)P(yx,z)P(xz)
接下来做一下变量的替换:
y = z n y=z_n y=zn
z = z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 z=z_1,z_2,···,z_{n-1} z=z1,z2,,zn1
带入上式:
P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n ) = P ( z n ∣ x , z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) P ( z n ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) P(x|z_1,z_2,···,z_n)=\frac{P(z_n|x,z_1,z_2,···,z_{n-1})P(x|z_1,z_2,···,z_{n-1})}{P(z_n|z_1,z_2,···,z_{n-1})} P(xz1,z2,,zn)=P(znz1,z2,,zn1)P(znx,z1,z2,,zn1)P(xz1,z2,,zn1)
其中, x x x是状态,机器人学中可以认为是机器人的状态,包括机器人的位姿,机器人的线速度或角速度,环境中周围物体的位置和特征等。 z 1 , z 2 , ⋅ ⋅ ⋅ , z n z_1,z_2,···,z_n z1,z2,,zn时间从 1 1 1 n n n环境测量数据的集合。
化简:
根据马尔可夫假设,当状态已知,测量 z n z_n zn便独立于之前的测量,理解起来好比, x x x为门的状态(开或关), z z z为传感器测量的结果(开或关,传感器带有误差)。
当不知道 x x x时,即门的开关状态未知时, z n z_n zn的结果依赖于之前测量的结果( z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 z_1,z_2,···,z_{n-1} z1,z2,,zn1),如果之前测量的结果是门开启的概率大,那么 z n z_n zn的结果差不多也是这样,门大概率开着;
x x x的状态已经知道时,假设门是开着的,那么 z n z_n zn的结果,不在依赖于之前测量的结果,而只与传感器的测量精度有关了。
因此:
P ( z n ∣ x , z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) = P ( z n ∣ x ) P(z_n|x,z_1,z_2,···,z_{n-1})=P(z_n|x) P(znx,z1,z2,,zn1)=P(znx)
P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n ) = P ( z n ∣ x ) P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) P ( z n ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) P(x|z_1,z_2,···,z_n)=\frac{P(z_n|x)P(x|z_1,z_2,···,z_{n-1})}{P(z_n|z_1,z_2,···,z_{n-1})} P(xz1,z2,,zn)=P(znz1,z2,,zn1)P(znx)P(xz1,z2,,zn1)
P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n ) = η P ( z n ∣ x ) P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) P(x|z_1,z_2,···,z_n)=\eta P(z_n|x)P(x|z_1,z_2,···,z_{n-1}) P(xz1,z2,,zn)=ηP(znx)P(xz1,z2,,zn1)
将上式的 n n n n − 1 n-1 n1替换,带入上式
P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 1 ) = η ∗ P ( z n − 1 ∣ x ) P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 2 ) P(x|z_1,z_2,···,z_{n-1})=\eta^* P(z_{n-1}|x)P(x|z_1,z_2,···,z_{n-2}) P(xz1,z2,,zn1)=ηP(zn1x)P(xz1,z2,,zn2)
P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n ) = η η ∗ P ( z n ∣ x ) P ( z n − 1 ∣ x ) P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n − 2 ) P(x|z_1,z_2,···,z_n)=\eta \eta^* P(z_n|x)P(z_{n-1}|x)P(x|z_1,z_2,···,z_{n-2}) P(xz1,z2,,zn)=ηηP(znx)P(zn1x)P(xz1,z2,,zn2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ······
从上式我们可以看出递归的影子,继续化简
P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n ) = η 1 ⋅ ⋅ ⋅ n [ ∏ i = 1 n P ( z n ∣ x ) ] P ( x ) P(x|z_1,z_2,···,z_n)=\eta_{1···n} \left[\prod_{i=1}^n P(z_n|x)\right]P(x) P(xz1,z2,,zn)=η1n[i=1nP(znx)]P(x)
这里和上面的 η \eta η都是为了保证等式左边以 x x x累加之和等于1( ∑ x P ( x ∣ z 1 , z 2 , ⋅ ⋅ ⋅ , z n ) = 1 \sum_xP(x|z_1,z_2,···,z_n)=1 xP(xz1,z2,,zn)=1)而设置的一个常数,其大小就等于 ∑ x [ ( ∏ i = 1 n P ( z n ∣ x ) ) P ( x ) ] \sum_x\left[ \left(\prod_{i=1}^n P(z_n|x)\right)P(x)\right] x[(i=1nP(znx))P(x)]
例子:
状态估计
第一次测量:
P ( z 1 ∣ o p e n ) = 0.6 P(z_1|open)=0.6 P(z1open)=0.6 当门开着的时候机器人测量结果为 z 1 z_1 z1的概率是0.6
P ( z 1 ∣ ! o p e n ) = 0.3 P(z_1|!open)=0.3 P(z1!open)=0.3 当门关着的时候机器人测量结果为 z 1 z_1 z1的概率是0.3
P ( o p e n ) = P ( ! o p e n ) = 0.5 P(open)=P(!open)=0.5 P(open)=P(!open)=0.5 门的状态是开启还是关闭的概率均为0.5
P ( o p e n ∣ z 1 ) = P ( z 1 ∣ o p e n ) P ( o p e n ) P ( z 1 ∣ o p e n ) P ( o p e n ) + P ( z 1 ∣ ! o p e n ) P ( ! o p e n ) P(open|z_1)=\frac{P(z_1|open)P(open)}{P(z_1|open)P(open)+P(z_1|!open)P(!open)} P(openz1)=P(z1open)P(open)+P(z1!open)P(!open)P(z1open)P(open)
= 0.6 ⋅ 0.5 0.6 ⋅ 0.5 + 0.3 ⋅ 0.5 ≈ 0.67 =\frac{0.6\cdot0.5}{0.6\cdot0.5+0.3\cdot0.5}\approx0.67 =0.60.5+0.30.50.60.50.67
当测量结果为 z 1 z_1 z1时,门是开着的概率是0.67
第二次测量:
P ( z 2 ∣ o p e n ) = 0.5 P(z_2|open)=0.5 P(z2open)=0.5 当门开着的时候,测量结果为 z 2 z_2 z2的概率为0.5
P ( z 2 ∣ ! o p e n ) = 0.6 P(z_2|!open)=0.6 P(z2!open)=0.6 当门关着的时候,测量结果为 z 2 z_2 z2的概率为0.6
P ( o p e n ∣ z 1 ) = 0.67 P(open|z_1)=0.67 P(openz1)=0.67 当测量结果为 z 1 z_1 z1的时候,门是开着的概率为0.67,我们在第一次测量时得到的:
P ( o p e n ∣ z 1 , z 2 ) = P ( z 2 ∣ o p e n ) P ( o p e n ∣ z 1 ) P ( z 2 ∣ o p e n ) P ( o p e n ∣ z 1 ) + P ( z 2 ∣ ! o p e n ) P ( ! o p e n ∣ z 1 ) P(open|z_1,z_2)=\frac{P(z_2|open)P(open|z_1)}{P(z_2|open)P(open|z_1)+P(z_2|!open)P(!open|z_1)} P(openz1,z2)=P(z2open)P(openz1)+P(z2!open)P(!openz1)P(z2open)P(openz1)
= 0.5 ⋅ 0.67 0.5 ⋅ 0.67 + 0.6 ⋅ 0.33 ≈ 0.63 =\frac{0.5\cdot0.67}{0.5\cdot0.67+0.6\cdot0.33}\approx0.63 =0.50.67+0.60.330.50.670.63

2.增加控制输入的状态估计

为了表示控制输入 u u u对状态的影响,引入状态转移概率:
P ( x ∣ u , x ′ ) P(x|u,x^\prime) P(xu,x)
根据全概率公式:
P ( x ) = ∑ x ′ P ( x ∣ x ′ ) P ( x ′ ) P(x)=\sum_{x^\prime}P(x|x^\prime)P(x^\prime) P(x)=xP(xx)P(x)
增加了条件 u u u之后:
P ( x ∣ u ) = ∑ x ′ P ( x ∣ u , x ′ ) P ( x ′ ∣ u ) P(x|u)=\sum_{x^\prime}P(x|u,x^\prime)P(x^\prime|u) P(xu)=xP(xu,x)P(xu)
由于 P ( x ′ ∣ u ) P(x^\prime|u) P(xu)是当执行完 u u u之后, x ′ x^\prime x的概率,即便是执行 u u u之前, x ′ x^\prime x的概率依然是这个,也就是说,上一时刻的状态不会由下一时刻的动作改变,下一时刻的动作只能改变下一时刻的状态,不能改变过去,因此上一时刻的状态和这一时刻的动作是独立的, P ( x ′ ∣ u ) = P ( x ′ ) P(x^\prime|u)=P(x^\prime) P(xu)=P(x),于是就有下面的式子:
P ( x ∣ u ) = ∑ x ′ P ( x ∣ u , x ′ ) P ( x ′ ) P(x|u)=\sum_{x^\prime}P(x|u,x^\prime)P(x^\prime) P(xu)=xP(xu,x)P(x)
当让 x x x代表门的开关状态为开, u u u代表机器人开门的动作,那么 P ( x ∣ u ) P(x|u) P(xu)是在机器人执行了开门动作之后,门开着的概率。根据全概率公式,执行动作之前门的状态是有开和关两个划分组成,机器人执行开的指令后门开的概率和门之前的状态有关,二者一般不一样。例如当门开着时,执行开门指令后,门开的概率一般大于门关着时执行开门指令后,门开的概率。因此这两个概率应该相加才是真正的执行动作后门开的概率。
例子:
接上例,第三次测量之前,机器人发出了控制关门的指令 u u u
开门动作
在这里插入图片描述
P ( c l o s e d ∣ u ) = ∑ x ′ P ( c l o s e d ∣ u , x ′ ) P ( x ′ ) P(closed|u)=\sum_{x^\prime}P(closed|u,x^\prime)P(x^\prime) P(closedu)=xP(closedu,x)P(x)
= P ( c l o s e d ∣ u , o p e n ) P ( o p e n ) + P ( c l o s e d ∣ u , c l o s e d ) P ( c l o s e d ) =P(closed|u,open)P(open)+P(closed|u,closed)P(closed) =P(closedu,open)P(open)+P(closedu,closed)P(closed)
= 0.9 ⋅ 0.63 + 1 ⋅ 0.37 = 0.937 =0.9\cdot0.63+1\cdot0.37=0.937 =0.90.63+10.37=0.937
P ( o p e n ∣ u ) = ∑ x ′ P ( o p e n ∣ u , x ′ ) P ( x ′ ) P(open|u)=\sum_{x^\prime}P(open|u,x^\prime)P(x^\prime) P(openu)=xP(openu,x)P(x)
= P ( o p e n ∣ u , o p e n ) P ( o p e n ) + P ( o p e n ∣ u , c l o s e d ) P ( c l o s e d ) =P(open|u,open)P(open)+P(open|u,closed)P(closed) =P(openu,open)P(open)+P(openu,closed)P(closed)
= 0.1 ⋅ 0.63 + 0 ⋅ 0.37 = 0.063 =0.1\cdot0.63+0\cdot0.37=0.063 =0.10.63+00.37=0.063

3.贝叶斯滤波

(1)隐马尔可夫模型(HMM)

动态贝叶斯网络
假设机器人的控制和测量都服从上面的隐马尔科夫模型,可以知道 u t u_t ut代表 t t t时刻的控制输入, z t z_t zt代表 t t t时刻的测量, x t x_t xt代表 t t t时刻的隐状态。
测量概率
当想知道 t t t时刻的测量值 z t z_t zt的概率时,通过上面的隐马尔科夫模型可以看出,似乎依赖 t t t时刻及之前所有的隐状态 x t , x t − 1 , ⋅ ⋅ ⋅ , x 0 x_t,x_{t-1},···,x_0 xt,xt1,,x0、控制输入 u t , u t − 1 , ⋅ ⋅ ⋅ , u 1 u_t,u_{t-1},···,u_1 ut,ut1,,u1以及观测 z t − 1 , z t − 2 , ⋅ ⋅ ⋅ , z 1 z_{t-1},z_{t-2},···,z_1 zt1,zt2,,z1,但是,隐马尔可夫假设当隐状态已知时,此时的观测独立,即任意时刻的观测只依赖于该时刻的马尔科夫链的状态,与其他观测即状态无关。可以得到下面的条件独立:
P ( z t ∣ x 0 : t , z 1 : t − 1 , u 1 : t ) = P ( z t ∣ x t ) P(z_t|x_{0:t},z_{1:t-1},u_{1:t})=P(z_t|x_t) P(ztx0:t,z1:t1,u1:t)=P(ztxt)
状态转移概率
当想知道 t t t时刻的状态 x t x_t xt的概率时,通过上面的隐马尔科夫模型可以看出,似乎依赖之前所有的隐状态 x t − 1 , x t − 2 , ⋅ ⋅ ⋅ , x 0 x_{t-1},x_{t-2},···,x_0 xt1,xt2,,x0、控制输入 u t , u t − 1 , ⋅ ⋅ ⋅ , u 1 u_t,u_{t-1},···,u_1 ut,ut1,,u1以及观测 z t − 1 , z t − 2 , ⋅ ⋅ ⋅ , z 1 z_{t-1},z_{t-2},···,z_1 zt1,zt2,,z1,但是当 x t − 1 x_{t-1} xt1时刻的隐状态已知时, x t x_t xt仅依赖与上一时刻的隐状态 x t − 1 x_{t-1} xt1和当前时刻的控制输入 u t u_t ut,可以得到下面的条件独立:
P ( z t ∣ x 0 : t − 1 , z 1 : t − 1 , u 1 : t ) = P ( x t ∣ x t − 1 , u t ) P(z_t|x_{0:t-1},z_{1:t-1},u_{1:t})=P(x_t|x_{t-1},u_t) P(ztx0:t1,z1:t1,u1:t)=P(xtxt1,ut)
置信度
由于机器人的状态不能直接获得,因此往往通过测量数据以及输入控制数据推测出机器人的状态:
b e l ( x t ) = P ( x t ∣ z 1 : t , u 1 : t ) bel(x_t)=P(x_t|z_{1:t},u_{1:t}) bel(xt)=P(xtz1:t,u1:t)
即上面的置信度分布是所有可获得的数据为条件的关于状态变量的后验分布,为每一个可能的状态分配了一个概率,下面就要化简这个置信度分布。
我们曾经得到过添加了其他条件 z z z之后的贝叶斯公式:
P ( x ∣ y , z ) = P ( y ∣ x , z ) P ( x ∣ z ) P ( y ∣ z ) P(x|y,z)=\frac{P(y|x,z)P(x|z)}{P(y|z)} P(xy,z)=P(yz)P(yx,z)P(xz)
上述置信度分布也类似进行分解:
x → x t x\rightarrow x_t xxt
y → z t y\rightarrow z_t yzt
z → z 1 : t − 1 , u 1 : t z\rightarrow z_{1:t-1},u_{1:t} zz1:t1,u1:t
前面把 z t z_t zt单独取出,是因为可以得到测量概率,一个比较容易获得的量,一般与传感器的精度有关:
b e l ( x t ) = P ( x t ∣ z 1 : t , u 1 : t ) = P ( z t ∣ x t , z 1 : t − 1 ) P ( x t ∣ z 1 : t − 1 , u 1 : t ) P ( z t ∣ z 1 : t − 1 , u 1 : t ) bel(x_t)=P(x_t|z_{1:t},u_{1:t})=\frac{P(z_t|x_t,z_{1:t-1})P(x_t|z_{1:t-1},u_{1:t})}{P(z_t|z_{1:t-1},u_{1:t})} bel(xt)=P(xtz1:t,u1:t)=P(ztz1:t1,u1:t)P(ztxt,z1:t1)P(xtz1:t1,u1:t)
根据因马尔科夫假设 P ( z t ∣ x t , z 1 : t − 1 ) = P ( z t ∣ x t ) P(z_t|x_t,z_{1:t-1})=P(z_t|x_t) P(ztxt,z1:t1)=P(ztxt),化简得:
P ( x t ∣ z 1 : t , u 1 : t ) = η P ( z t ∣ x t ) P ( x t ∣ z 1 : t − 1 , u 1 : t ) P ( z t ∣ z 1 : t − 1 , u 1 : t ) P(x_t|z_{1:t},u_{1:t})=\eta P(z_t|x_t)P(x_t|z_{1:t-1},u_{1:t})P(z_t|z_{1:t-1},u_{1:t}) P(xtz1:t,u1:t)=ηP(ztxt)P(xtz1:t1,u1:t)P(ztz1:t1,u1:t)
为了化简 P ( x t ∣ z 1 : t − 1 , u 1 : t ) P(x_t|z_{1:t-1},u_{1:t}) P(xtz1:t1,u1:t)这一项,为了凑出递归,需要引入 x t − 1 x_{t-1} xt1项,但是,在最终结果里面不应该有 x t − 1 x_{t-1} xt1项,巧妙地利用积分(求和,离散情况)将 x t − 1 x_{t-1} xt1项消掉,这种全概率思想在这类问题上应用比较多。
P ( x t ∣ z 1 : t − 1 , u 1 : t ) = ∫ x t − 1 P ( x t ∣ z 1 : t − 1 , u 1 : t , x t − 1 ) P ( x t − 1 ∣ z 1 : t − 1 , u 1 : t ) d x t − 1 P(x_t|z_{1:t-1},u_{1:t})=\int_{x_{t-1}}P(x_t|z_{1:t-1},u_{1:t},x_{t-1})P(x_{t-1}|z_{1:t-1},u_{1:t})dx_{t-1} P(xtz1:t1,u1:t)=xt1P(xtz1:t1,u1:t,xt1)P(xt1z1:t1,u1:t)dxt1
由于现在的动作不会对以前的状态产生影响, P ( x t − 1 ∣ z 1 : t − 1 , u 1 : t ) = P ( x t − 1 ∣ z 1 : t − 1 , u 1 : t − 1 ) P(x_{t-1}|z_{1:t-1},u_{1:t})=P(x_{t-1}|z_{1:t-1},u_{1:t-1}) P(xt1z1:t1,u1:t)=P(xt1z1:t1,u1:t1)
P ( x t ∣ z 1 : t − 1 , u 1 : t ) = ∫ x t − 1 P ( x t ∣ z 1 : t − 1 , u 1 : t , x t − 1 ) P ( x t − 1 ∣ z 1 : t − 1 , u 1 : t − 1 ) d x t − 1 P(x_t|z_{1:t-1},u_{1:t})=\int_{x_{t-1}}P(x_t|z_{1:t-1},u_{1:t},x_{t-1})P(x_{t-1}|z_{1:t-1},u_{1:t-1})dx_{t-1} P(xtz1:t1,u1:t)=xt1P(xtz1:t1,u1:t,xt1)P(xt1z1:t1,u1:t1)dxt1
P ( x t ∣ z 1 : t − 1 , u 1 : t ) = ∫ x t − 1 P ( x t ∣ u t , x t − 1 ) b e l ( x t − 1 ) d x t − 1 P(x_t|z_{1:t-1},u_{1:t})=\int_{x_{t-1}}P(x_t|u_t,x_{t-1})bel(x_{t-1})dx_{t-1} P(xtz1:t1,u1:t)=xt1P(xtut,xt1)bel(xt1)dxt1
b e l ( x t ) = η P ( z t ∣ x t ) ∫ x t − 1 P ( x t ∣ u t , x t − 1 ) b e l ( x t − 1 ) d x t − 1 bel(x_{t})=\eta P(z_t|x_t)\int_{x_{t-1}}P(x_t|u_t,x_{t-1})bel(x_{t-1})dx_{t-1} bel(xt)=ηP(ztxt)xt1P(xtut,xt1)bel(xt1)dxt1
由此构成了递归, b e l ( x t − 1 ) bel(x_{t-1}) bel(xt1)是上一时刻的置信度,乘状态转移概率之后做求和,便是没有测量条件下的状态 x t x_t xt的分布概率,但是 b e l ( x t ) bel(x_{t}) bel(xt)是基于以前所有测量和控制的,因此,通过 η P ( z t ∣ x t ) \eta P(z_t|x_t) ηP(ztxt)进行了修正, η \eta η为常数, P ( z t ∣ x t ) P(z_t|x_t) P(ztxt)越大,说明在给定状态 x t x_t xt下, z t z_t zt出现的可能性比较大,因此 z t z_t zt条件下 x t x_t xt的概率也越大,即 b e l ( x t ) bel(x_t) bel(xt)越大。
例子:
移动机器人定位
分析上面这个简单的例子:
(a)
机器人在没有打开传感器之前,它在任何一点的概率(置信度)都相同。
(b)
当机器人经过了一次传感器的测量之后,发现自己位于门附近,由于机器人事先知道了该地图,因此机器人认为,在三个门附近的概率较其他地方更大,但是,三个门附近的概率相同,不能确定位于哪个门附近,此时得到了 P ( z ∣ x ) P(z|x) P(zx)
©
当机器人运动时,由于三个位置不能确定,因此这三个“峰值”也会跟随机器人运动。
运动带来的不确定性使得本次“峰值”比之前更小。
(d)
b e l ( x d ) = η P ( z ∣ x ) ∗ b e l ( x c ) bel(x_d)=\eta P(z|x)*bel(x_c) bel(xd)=ηP(zx)bel(xc),可以看到五个“峰值”,第二个门处峰值最大也是归一化的结果。
(e)
在接下来的运动中,“峰值”会一直跟随机器人一起运动,但是由于运动的不确定性,“峰值”的高度会越来越小。

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 贝叶斯滤波是一种基于贝叶斯定理的概率滤波算法,用于在给定一系列观测数据的情况下对目标状态进行估计。它的主要目的是通过将先验知识和观测数据相结合,来获得对目标状态的最优估计。 平滑是贝叶斯滤波算法的一个重要应用。在平滑问题中,我们试图通过后验概率分布的边缘化来估计过去的目标状态。与滤波问题不同的是,平滑问题需要使用整个观测序列,包括未来的观测值,来进行估计贝叶斯滤波和平滑在很多领域有着广泛的应用,例如机器人定位和航迹跟踪等。在机器人定位中,贝叶斯滤波可以结合传感器观测和运动模型来估计机器人的准确位置。在航迹跟踪中,贝叶斯滤波可以通过融合多个传感器的观测数据,来估计目标物体的位置和速度。 在贝叶斯滤波和平滑的实际应用中,还有一些常见的算法。例如,卡尔曼滤波是一种常用的线性贝叶斯滤波算法,适用于具有高斯噪声的线性系统。粒子滤波是一种非线性贝叶斯滤波算法,它通过使用一组粒子来近似目标状态的后验概率分布。 总而言之,贝叶斯滤波和平滑是一类概率滤波算法,通过结合先验知识和观测数据来对目标状态进行估计。它们在众多领域中有着广泛的应用,是许多机器学习和人工智能问题中的重要工具。 ### 回答2: 贝叶斯滤波是一种基于贝叶斯定理的概率滤波方法。它通过结合先验信息和当前观测数据来估计系统状态的后验概率分布。贝叶斯滤波可以用于多种应用,例如机器人定位和跟踪,信号处理等。 贝叶斯滤波可以分为预测步骤和更新步骤。在预测步骤中,通过当前状态概率分布和系统动力学模型来预测下一时刻状态概率分布。在更新步骤中,将预测的概率分布与当前观测数据结合,使用贝叶斯定理计算得到后验概率分布。 贝叶斯滤波是一种递归的方法,可以根据新观测数据不断更新状态概率分布,从而实现对系统状态的准确估计。然而,由于计算复杂度的原因,传统的贝叶斯滤波方法在实际应用中可能存在问题。 为了解决这个问题,平滑贝叶斯滤波方法被提出。平滑贝叶斯滤波不仅使用当前观测数据,还使用未来观测数据来优化对状态估计。它通过回溯时间,先计算最后一个时刻的后验概率分布,然后逐步计算前面每个时刻的后验概率分布。这样可以获得更准确的状态估计结果。 在实际应用中,平滑贝叶斯滤波常用于信号处理领域,例如语音增强和图像恢复等。它可以通过利用未来的观测数据,提供更好的信号估计结果。此外,平滑贝叶斯滤波还可以用于系统参数辨识和模型训练,对于建模和预测具有重要意义。 总而言之,贝叶斯滤波是一种基于概率滤波方法,在估计系统状态方面具有广泛应用。平滑贝叶斯滤波是对传统贝叶斯滤波的改进,通过使用未来观测数据来提高状态估计结果的准确性。 ### 回答3: 贝叶斯滤波是一种基于贝叶斯定理的概率推断方法,也是常用的状态估计算法之一。它主要用于处理具有噪声干扰的观测数据和系统状态的关系,并能够不断更新状态概率分布。贝叶斯滤波通过将先验概率与观测数据进行组合,来得到后验概率分布,进而对系统状态进行估计和预测。这种滤波方法可以用于多种领域,如机器学习、模式识别、目标追踪等。 平滑是贝叶斯滤波的一个重要应用,它可以通过使用历史观测数据和未来的观测数据,来对系统状态进行后验估计。在实际应用中,通常需要对过去的观测数据进行平滑处理,以更好地理解系统的演化过程和状态变化。平滑能够提供对于过去状态的更加准确和稳定的估计结果。 CSDN是一个技术社区,其中包含了大量关于贝叶斯滤波和平滑的文章和学习资源。在CSDN上,你可以找到一些关于贝叶斯滤波和平滑的基础知识和原理,以及一些实际应用和算法实现的案例和教程。如果你对贝叶斯滤波和平滑算法感兴趣,CSDN是一个很好的学习和交流平台,能够帮助你更好地理解和应用这些算法。总之,通过在CSDN上学习和探索贝叶斯滤波和平滑,你将能够更好地理解和应用这些概念和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值