AI预测-K折叠交叉验证

本文详细介绍了AI预测中的关键步骤,如ETL和算法策略,以及如何通过K折交叉验证进行模型参数优化,包括使用代码示例展示了如何在Python中实现。特别强调了在模型性能提升中的作用,尤其是在迁移训练中的应用.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI预测相关目录

AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验

  1. EEMD策略及踩坑
  2. VMD-CNN-LSTM时序预测
  3. 对双向LSTM等模型添加自注意力机制
  4. K折叠交叉验证


一、K折叠交叉验证

主要用于模型参数优化

K折交叉验证是一种用于评估机器学习模型性能的动态验证方法。它将原始数据集分成K份,每次使用其中的K-1份作为训练集,剩余的一份作为验证集,重复进行K次,以便每个子集都有机会作为验证集。

K折交叉验证的优点有:
数据利用充分:可以更充分地利用数据集,因为每个样本都会被用于验证一次。这有助于减少模型评估结果的方差,使评估结果更加稳定可靠。
检测过拟合和欠拟合:可以得到K个独立的模型性能评估结果,从而检测模型是否出现过拟合或者欠拟合的情况。
模型选择和参数调整:通过交叉验证,可以选择最优的模型和参数,从而提高模型的泛化能力。
评估结果的稳定性:通过对K个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感。


二、代码示例

from sklearn.model_selection import KFold  
from sklearn
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写代码的中青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值