AI预测相关目录
AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容
最好有基础的python算法预测经验
- EEMD策略及踩坑
- VMD-CNN-LSTM时序预测
- 对双向LSTM等模型添加自注意力机制
- K折叠交叉验证
一、K折叠交叉验证
主要用于模型参数优化。
K折交叉验证是一种用于评估机器学习模型性能的动态验证方法。它将原始数据集分成K份,每次使用其中的K-1份作为训练集,剩余的一份作为验证集,重复进行K次,以便每个子集都有机会作为验证集。
K折交叉验证的优点有:
数据利用充分:可以更充分地利用数据集,因为每个样本都会被用于验证一次。这有助于减少模型评估结果的方差,使评估结果更加稳定可靠。
检测过拟合和欠拟合:可以得到K个独立的模型性能评估结果,从而检测模型是否出现过拟合或者欠拟合的情况。
模型选择和参数调整:通过交叉验证,可以选择最优的模型和参数,从而提高模型的泛化能力。
评估结果的稳定性:通过对K个不同分组训练的结果进行平均来减少方差,因此模型的性能对数据的划分就不那么敏感。
二、代码示例
from sklearn.model_selection import KFold
from sklearn