建立空间索引在点云数据处理中已被广泛应用,常见空间索引一般是自顶向下逐级划分空间的各种空间索引结构,比较有代表性的包括 BSP 树、KD 树、KDB 树、 R树、R+树、CELL 树、四叉树和八叉树等索引结构,而在这些结构中 KD 树和八叉树在 3D点云数据排列中应用较为广泛。 PCL 对八叉树的数据结构建立和索引方法进行了实现,以方便在此基础上对点云进行处理操作 。
原理概述

八叉树(Octree)的定义是:若不为空树的话,树中任一节点的子节点恰好只会有八个,或零个,也就是子节点不会有0与8以外的数目。那么,这要用来做什么?想象一个立方体,我们最少可以切成多少个相同等分的小立方体?答案就是8个。再想象我们有一个房间,房间里某个角落藏着一枚金币,我们想很快的把金币找出来,聪明的你会怎么做?我们可以把房间当成一个立方体,先切成八个小立方体,然后排除掉没有放任何东西的小立方体,再把有可能藏金币的小立方体继续切八等份….如此下去,平均在
(n表示房间内的所有物体数)的时间内就可找到金币。因此,八叉树就是用在3D空间中的场景管理,可以很快地知道物体在3D场景中的位置,或侦测与其它物体是否有碰撞以及是否在可视范围内。
pcl的octree库提供了从点云数据创建具有层次的数据结构的方法。这样就可以对点数据集进行空间分区,下采样和搜索操作。每个八叉树节点有八个子节点或没有子节点。根节点描述了一个包围所有点的3维包容盒子。
pcl_octree实现提供了有效的最近邻居搜索(邻域搜索)API,例如“ 体素(Voxel)邻居搜索
文章介绍了八叉树在3D点云数据处理中的应用,特别是PCL库如何利用八叉树进行空间索引、下采样和搜索操作。通过八叉树结构,可以快速定位物体位置、检测碰撞和可视性。示例代码展示了如何使用PCL的octree模块进行体素邻域搜索、K最近邻搜索和半径搜索邻域操作。
订阅专栏 解锁全文
2094

被折叠的 条评论
为什么被折叠?



